

Раздел № 01. Введение в математический анализ

Тема № 01. Элементы теории множеств и математической логики

Лекция № 02. Отображения

Учебные вопросы:

- 1. Понятие отображения
- 2. Сужение отображения
- 3. Образ множества
- 4. Прообраз множества
- 5. Инъекция, сюръекция
- 6. Композиция отображений
- 7. Обратное отображение
- 8. График отображения

Литература

- 1. Аксенов А. П. Математика. Математический анализ Ч. 1 : учеб. пособие А. П. Аксенов СПб.: Изд-во Политехн, ун-та, 2009. 614 с. (Математика в политехническом университете). ISBN 978-5-7422-2305-4
- 2. Зорич В. А. Математический анализ: Учеб. для мат. и физ.-мат. фак. и спец. вузов/ В. А. Зорич.- 4-е изд., испр.-Москва: МЦНМО, 2002 Ч.1.- 2002.- 657 с.: ил.- Библиогр.: с.641-644. ISBN 5940570569
- 3. Тер-Крикоров А. М. Шабунин М. И. Курс математического анализа: учебное пособие для вузов по направлению "Прикладная математика и физика" / А. М. Тер-Крикоров, М. И. Шабунин. -7-е изд. -Москва: Лаборатория знаний: [Лаборатория Пилот, 2017]. -672 с. : ил.; 22 см. (Математика).-Библиогр.: с. 664. -Предм. указ.: с. 665-669.ISBN 978-5-00101-039-5.

1. Отображения (функции)

1^{0} . Понятие отображения.

Пусть X, Y — множества. Отображением (функцией), определенным на X со значениями в Y называется правило f, ставящее каждому $x \in X$ в соответствие некоторый элемент $y \in Y$. Запись

$$f: X \to Y$$
 или $X \stackrel{f}{\to} Y$ (1)

означает, что f отображает X **в** Y .

X называется множеством (областью) определения, Y — множеством прибытия отображения f. Элемент y, соответствующий элементу x в силу закона f, называется значением отображения f в точке x. Значение f в точке x обозначают через f(x).

Примеры. 1) $X = Y = \mathbb{R}$, правило f ставит каждому вещественному числу x вещественное число $y = x^2$.

2) Проекции декартова произведения:

$$pr_1: X \times Y \to X, \ pr_1(x, y) = x;$$

 $pr_2: X \times Y \to Y, \ pr_2(x, y) = y.$

3) Пусть P(X) —совокупность всех подмножеств множества X . Каждому $A \in P(X)$ поставим в соответствие его дополнение CA . Получим отображение $P(X) \to P(X)$.

Строго говоря, определяя конкретную функцию, мы должны указать множества X и Y и описать правило f. Однако часто из контекста понятно, о каких множествах идет речь, так что можно ограничиться описанием

правила. Фразу «функция f действует по правилу f(x) = 2x + 3» будем коротко записывать в виде

$$f: f(x) = 2x + 3, x \xrightarrow{f} 2x + 3$$
 или $y = 2x + 3$.

Символ x, обозначающий произвольный элемент множества X определения функции называют аргументом функции f или независимой переменной. В такой терминологии для функции можно использовать обозначение y = f(x) и называть y зависимой переменной. Независимую переменную можно считать тождественной функцией на X.

2^{0} . Сужение отображения.

Если $f:X \to Y$, а $E \subset X$, то отображение $g:E \to Y$, действующее по формуле

$$g(x) = f(x)$$
 для $x \in E$,

называется сужением f на множество E . Для сужения используют обозначение $f|_E$. Функция f называется продолжением для g .

3⁰. Образ множества.

Пусть $f: X \to Y$, а $E \subset X$. Множество

$$f(E) = \{ y \mid \exists x \in E \ y = f(x) \} = \{ f(x) \mid x \in E \}$$
 (2)

называется *образом* множества E под действием отображения f . Образ f(X) множества определения называется *множеством значений*.

4^{0} . Прообраз множества.

Пусть $f: X \to Y$, а $U \subset Y$. Множество

$$f^{-1}(U) = \{ x \in X \mid f(x) \in U \}$$
 (3)

называется npooбpaзom множества U при отображении f .

5⁰. Инъекция, сюръекция.

Пусть $f: X \to Y$. Отображение f называется взаимно однозначным, или инъекцией, если в разных точках оно принимает разные значения:

$$f(x_1) = f(x_2) \Longrightarrow x_1 = x_2. \tag{3}$$

Отображение f называется $c \omega p \omega e \kappa u u e u$, если множество значений совпадает с множеством прибытия: f(X) = Y.

Про сюръекцию $f: X \to Y$ говорят также, что f отображает X на Y.

Отображение f называется биекцией, если оно является как инъекцией, так и сюръекцией. Биекция — это взаимно однозначное отображение одного множества **на** другое

6° . Композиция отображений.

Пусть $f: X \to Y$, $g: Y \to Z$. Отображение $h: X \to Z$, действующее по формуле

$$h(x) = g(f(x))$$
 для $x \in X$, (4)

называется композицией (суперпозицией) отображений f и g и обозначается через $g \circ f$.

Пример.
$$X = Y = Z = \mathbb{R}$$
, $f(x) = x + 1$, $g(y) = 2y$. Тогда
$$(f \circ g)(y) = f(g(y)) = f(2y) = 2y + 1$$
, $(g \circ f)(x) = g(f(x)) = f(x + 1) = 2x + 2$.

7^{0} . Обратное отображение.

Пусть $f: X \to Y$ — биекция. Построим отображение $g: Y \to X$. Взяв произвольный $y \in Y$, подберем $x \in X$, для которого f(x) = y . (Такой x

найдется, поскольку f — сюръекция, x —единствен, поскольку f — инъекция). Полагаем g(y) = x. Построенное отображение g называют обратным к f и пишут $g = f^{-1}$.

Отображение $g: Y \to X$ является обратным κ $f: X \to Y$ в том и только в том случае, если

$$\forall x \in X \ \forall y \in Y \ y = f(x) \Leftrightarrow x = g(y). \tag{5}$$

Отображение $I = I_X : X \to X$, I(x) = x называется тождественным.

Задача.
$$g = f^{-1} \Leftrightarrow g \circ f = I_X \wedge f \circ g = I_Y$$

8⁰. График отображения.

Пусть $f: X \to Y$. Графиком отображения f называется множество

$$\Gamma_f = \left\{ (x, y) \in X \times Y \mid y = f(x) \right\}. \tag{6}$$

Разработал доцент кафедры высшей математики Моисеев A. A.