

Раздел № 1 Линейная алгебра

Тема № 1 Определители и квадратные матрицы 2-го

и 3-го порядков

Лекция № 1

Учебные вопросы:

- 1. Введение.
- 2. Решение линейной системы второго порядка методом Крамера.
- 3. Определитель квадратной матрицы второго порядка.
- 4. Определитель квадратной матрицы третьего порядка. Правило Саррюса.
- 5. Свойства определителей.

Литература

- 1. Сборник задач по математике в четырех частях. Под общей редакцией А.В. Ефимова, Б.П. Демидовича
- 2. Б.П. Демидович. Краткий курс высшей математики.
- 3. А.Е. Умнов. Аналитическая геометрия и линейная алгебра.

1. Введение

Первый раздел посвящен началам линейной алгебры, а именно таким важным математическим понятиям, как определители, матрицы и системы линейных уравнений. Значение систем линейных уравнений объясняется не только тем, что они являются простейшими системами алгебраических уравнений, но и тем, что их решение составляет существенную часть решения разнообразных практических задач. Матрицы и определители были введены в рассмотрение для решения и исследования систем линейных уравнений. Однако оказалось, что их роль этим не исчерпывается, и они стали предметом самостоятельного изучения. В наши дни теория матриц находит обширные применения в вычислительной математике, физике, экономике и других областях науки.

2. Решение линейной системы второго порядка по правилу Крамера.

Рассмотрим систему из двух линейных уравнений с двумя неизвестными:

$$\begin{cases}
a_1 x + b_1 y = c_1, \\
a_2 x + b_2 y = c_2.
\end{cases}$$
(1)

Будем считать, что коэффициенты системы — произвольные числа, отличные от нуля. Умножим первое уравнение системы (1) на b_2 , а второе уравнение умножим на b_1 :

$$\begin{cases}
a_1b_2x + b_1b_2y = b_2c_1, \\
a_2b_1x + b_1b_2y = b_1c_2.
\end{cases}$$

Вычитая из первого уравнения второе, получим:

$$x(a_1b_2-a_2b_1)=b_2c_1-b_1c_2.$$

Если предположить, что $a_1b_2-a_2b_1\neq 0$, то получаем значение первой неизвестной:

$$x = \frac{b_2 c_1 - b_1 c_2}{a_1 b_2 - a_2 b_1}.$$

Аналогично можно получить значение второй неизвестной:

$$y = \frac{a_1c_2 - a_2c_1}{a_1b_2 - a_2b_1}.$$

Если один или несколько коэффициентов системы обращаются в ноль, то эти формулы можно проверить непосредственно. Главное, чтобы знаменатель полученных дробей был отличен от нуля. Заметим, во-первых, что нам удалось выразить неизвестные системы через данные коэффициенты и свободные члены уравнений системы, во-вторых, что мы получили единственно возможное решение системы, наконец, выражения для неизвестных имеют однотипный вид.

Определитель квадратной матрицы второго порядка.

Определение 1. Квадратной матрицей 2-го порядка называется таблица чисел:

$$A = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}, a_1, a_2, b_1, b_2 \in \mathbb{R}.$$

<u>Определение 2.</u> Определителем второго порядка матрицы второго порядка A называется число $a_1b_2-a_2b_1$.

Для определителя применяются следующие обозначения:

$$\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$$
, det A , $|A|$, Δ .

На рисунке 1 изображено правило Саррюса для определителя второго порядка. Одна из диагоналей называется главной, вторая – побочной.

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1.$$

главная диагональ

Рис. 1. Правило Саррюса для определителя второго порядка.

Теорема Крамера. Рассмотрим систему (1). Если $\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1 \neq 0$, то система (1) имеет единственное решение

$$\begin{cases} x = \frac{\Delta_x}{\Delta}, \\ y = \frac{\Delta_y}{\Delta}, \end{cases}$$
 где $\Delta_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = c_1b_2 - c_2b_1, \Delta_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = a_1c_2 - a_2c_1.$

Обычно элементы матрицы A обозначаются a_{ij} , где первый индекс i обозначает номер строки, в которой этот элемент находится, второй индекс j — номер столбца.

3. Определитель квадратной матрицы третьего порядка.

Определение 3. Квадратной матрицей третьего порядка называется таблица чисел:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, где $a_{ij} \in \mathbb{R}$.

Определение 4. Определителем матрицы третьего порядка A называется число, равное

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$
.

Определитель третьего порядка, так же как и определитель второго порядка, обозначается

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}, \det A, |A|, \Delta_3, \Delta.$$

Определители третьего порядка можно вычислить по правилу Саррюса (Рис. 2).

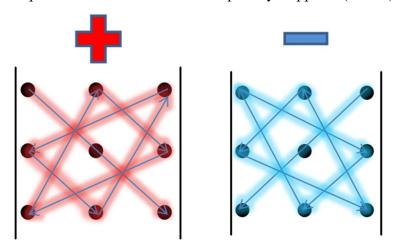


Рис. 2. Правило Саррюса для определителя 3-го порядка.

Как и в случае определителя второго порядка различают главную и побочную диагонали.

4. Свойства определителей 2-го и 3-го порядков.

Свойство 1. Если определитель содержит две одинаковых строки или два одинаковых столбца, то он равен нулю.

Свойство 2. Определитель, в котором все элементы одной из строк (одного из столбцов) являются суммой двух слагаемых, равен сумме двух определителей, например,

$$\left| \begin{array}{ccc} a_{11}^{'} + a_{11}^{''} & a_{12}^{'} + a_{12}^{''} & a_{13}^{'} + a_{13}^{''} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right| \ = \left| \begin{array}{cccc} a_{11}^{'} & a_{12}^{'} & a_{13}^{'} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right| \ + \left| \begin{array}{cccc} a_{11}^{''} & a_{12}^{''} & a_{13}^{''} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right|$$

Свойство 3. Общий множитель элементов какой-либо строки (столбца) определителя можно выносить за знак определителя.

Свойство 4. При транспонировании (замене строк на столбцы) квадратной матрицы её определитель остается неизменным.

Свойство 5. При перестановке местами двух любых строк или двух любых столбцов определителя его величина меняет знак.

Свойство 6. Определитель не изменится, если к элементам какой-либо строки (столбца) прибавить соответствующие элементы параллельной строки (столбца), умноженные на одно и то же число k.

Все эти свойства можно проверить, непосредственно применив правила Саррюса. Список свойств будет продолжен на следующей лекции, где будут разобраны такие понятия, как миноры элементов и алгебраические дополнения.

Разработал доцент кафедры высшей математики М. В. Лагунова