

Раздел № 02 Векторная алгебра

Тема №07 Линейные операции с

геометрическими векторами

Практическое занятие № 07

Учебные вопросы:

- 1. Понятие геометрического вектора.
- 2. Линейные операции с геометрическими векторами.
- 3. Понятие коллинеарности и компланарности векторов.
- 4. Разложение вектора по данным векторам на прямой, на плоскости и в пространстве.

Литература

- 1. Сборник задач по математике в четырёх частях. Под общей редакцией А.В. Ефимова, Б.П. Демидовича
- 2. Демидович Б.П. Краткий курс высшей математики.
- 3. А.Е. Умнов Аналитическая геометрия и линейная алгебра
- 4. Рябушко А.П. и др. Сборник индивидуальных заданий по высшей математике. Часть 1
- 5. П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова Высшая математика в упражнениях и задачах. Часть 1

Решение задач

Замечание. Прежде чем переходить к решению задач стоит ознакомиться с лекцией 08 Линейное пространство геометрических векторов.

1. По данным неколлинеарным векторам \vec{a} и \vec{b} построить векторы:

1.
$$\frac{1}{3}\vec{a} - 2\vec{b}$$
;

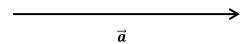
2.
$$2\vec{a} + \vec{b}$$
;

2.
$$2\vec{a} + \vec{b}$$
;
3. $\frac{3}{4}(\vec{a} + 2\vec{b}) - \frac{1}{4}(\vec{a} - 2\vec{b}) - \vec{a} - \vec{b}$.

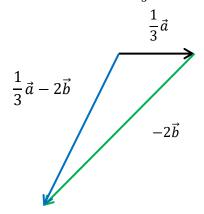
Решение.

Прежде всего стоит заметить, что в задачах такого типа у каждого студента будет своё условие, так как нам заданы произвольные вектора, соответственно и картинка при решении каждого пункта у всех будет своя.

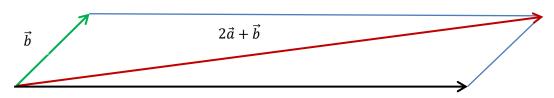
Построим два произвольных вектора на плоскости:



 $1.\frac{1}{2}\vec{a}-2\vec{b}$. Для построения данного вектора можно воспользоваться правилом треугольника. Для этого из конца вектора $\frac{1}{3}\vec{a}$ построим вектор $-2\vec{b}$, а затем соединим начало вектора $\frac{1}{3}\vec{a}$ с концом вектора $-2\vec{b}$:



 $2\vec{a} + \vec{b}$. Для построения данного вектора можно воспользоваться параллелограмма. Для этого построим из одной точки вектора $2\vec{a}$ и \vec{b} . Достроим получившуюся фигуру до параллелограмма. Диагональ данного параллелограмма, идущая из точки являющейся началом и одного и второго вектора, содержит искомый вектор:

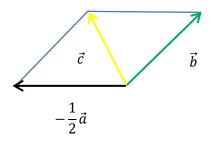


3. $\frac{3}{4}(\vec{a}+2\vec{b})-\frac{1}{4}(\vec{a}-\vec{2}\ 2\vec{a}\ \vec{\imath}-\vec{b}$. Для построения этого вектора необходимо упростить данное выражение:

3

$$\frac{3}{4}(\vec{a}+2\vec{b})-\frac{1}{4}(\vec{a}-2\vec{b})-\vec{a}-\vec{b}=\frac{3}{4}\vec{a}+\frac{3}{2}\vec{b}-\frac{1}{4}\vec{a}+\frac{1}{2}\vec{b}-\vec{a}-\vec{b}=-\frac{1}{2}\vec{a}+\vec{b}=\vec{c}.$$
 Для построения полученного вектора вновь воспользуемся правилом параллелограмма.

Для построения полученного вектора вновь воспользуемся правилом параллелограмма. Для этого проведём из одной точки вектор \vec{b} и $-\frac{1}{2}\vec{a}$. Достроим получившуюся фигуру до параллелограмма. Диагональ данного параллелограмма, которая содержит точку начала этих векторов содержит наш результирующий вектор:

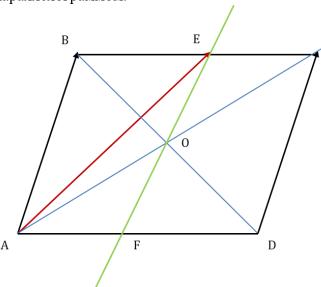


- 2. В четырёхугольнике $\overrightarrow{ABCD} \overrightarrow{AB} = \overrightarrow{DC}$. Через точку O пересечения его диагоналей проведена прямая, пересекающая стороны BC и AD соответственно в точках E и F. Какие из векторов \overrightarrow{AE} , \overrightarrow{EC} , \overrightarrow{AF} , \overrightarrow{DF} :
 - коллинеарны
 - сонаправлены
 - противоположно направлены
 - равны
 - имеют равные длины?

Решение.

Построим чертёж, иллюстрирующий условие задачи. Так как по условию задачи $\overrightarrow{AB} = \overrightarrow{DC}$, следовательно, стороны AB и CD нашего четырёхугольника параллельны и равны, а это значит, что по признаку параллелограмма наш четырёхугольник является параллелограммом.

C



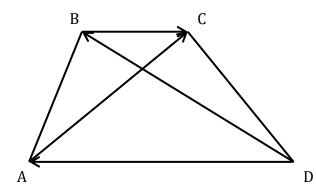
- коллинеарны: так как векторы \overrightarrow{EC} , \overrightarrow{AF} и \overrightarrow{DF} лежат на параллельных сторонах нашего четырёхугольника, то они являются коллинеарными;
- сонаправлены: при этом векторы \overrightarrow{EC} и \overrightarrow{AF} имеют одинаковое направление, значит они сонаправлены;
- противоположно направлены: векторы \overrightarrow{EC} и \overrightarrow{DF} , \overrightarrow{AF} и \overrightarrow{DF} –являются двумя парами противоположно направленных векторов.
 - $\Delta EOC = \Delta AOF => |AF| = |EC|$

следовательно, вектора \overrightarrow{EC} и \overrightarrow{AF} не только коллинеарны, но и равны.

- 3. ABCD трапеция, у которой AC = BD = 15, BC = 7, AD = 20. Найдите, если это возможно, такое число m, что
 - $\overrightarrow{DA} = m\overrightarrow{BC}$;
 - $\overrightarrow{AC} = m\overrightarrow{DB}$.

Решение.

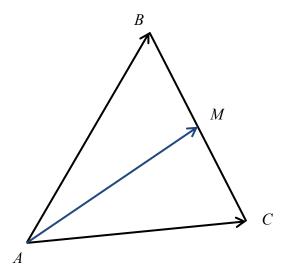
Построим чертёж, иллюстрирующий условие задачи:



- Вектор \overrightarrow{AC} и вектор являются пересекающимися, следовательно, равенство $\overrightarrow{AC} = m\overrightarrow{DB}$ невозможно.
- Вектор \overrightarrow{DA} и вектор лежат на параллельных сторонах трапеции, следовательно, они коллинеарны. Значит такое m существует и оно равно $\frac{|\overrightarrow{DA}|}{|\overrightarrow{BC}|} = \frac{20}{7}$. Так как вектора противоположно направленные имеем $\overrightarrow{DA} = -\frac{20}{7}\overrightarrow{BC}.$
- 4. В треугольнике \overrightarrow{ABC} дано $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{AC} = \overrightarrow{b}$, точка M середина стороны BC. Выразите вектор \overrightarrow{AM} через векторы \vec{a} и \vec{b} .

Решение.

Построим чертёж, иллюстрирующий условие задачи:



$$1.\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{BC}$$

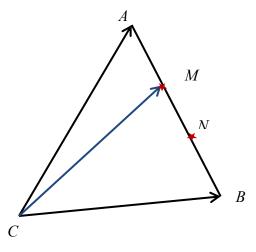
$$2. \overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} = -\overrightarrow{a} + \overrightarrow{b}$$

3.
$$\overrightarrow{AM} = \vec{a} + \frac{1}{2}(-\vec{a} + \vec{b}) = \frac{1}{2}\vec{a} + \frac{1}{2}\vec{b}$$

Ответ: $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$

5. В треугольнике ABC сторона AB разделена точками M и N на три равные части. Вектор $\overrightarrow{CA} = \vec{a}$, вектор $\overrightarrow{CB} = \vec{b}$. Выразите вектор \overrightarrow{CM} через \vec{a} и \vec{b} .

Построим чертёж, иллюстрирующий условие задачи:



1.
$$\overrightarrow{CM} = \overrightarrow{CA} + \overrightarrow{AM} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{A}$$

2.
$$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB} = -\overrightarrow{a} + \overrightarrow{b}$$

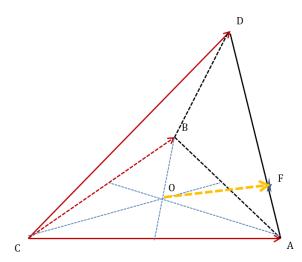
1.
$$\overrightarrow{CM} = \overrightarrow{CA} + \overrightarrow{AM} = \vec{a} + \frac{1}{3}\vec{A}$$

2. $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB} = -\vec{a} + \vec{b}$
3. $\overrightarrow{CM} = \vec{a} + \frac{1}{3}(-\vec{a} + \vec{b}) = \frac{2}{3}\vec{a} + \frac{1}{3}\vec{b}$

Ответ: $\overrightarrow{CM} = \frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}$

6. В тетраэдре $DABC\ O$ —точка пересечения медиан треугольника $ABC, F \in AD$, причём AF: FD = 1: 3. Разложите вектор \overrightarrow{OF} по векторам \overrightarrow{CA} , \overrightarrow{CB} и \overrightarrow{CD} .

Построим чертёж, иллюстрирующий условие задачи:



1. Выразим вектор
$$\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF}$$
;
2. $\overrightarrow{OA} = \frac{2}{3}\overrightarrow{MA} = \frac{2}{3}(\overrightarrow{MC} + \overrightarrow{CA}) = \frac{2}{3}(\frac{1}{2}\overrightarrow{BC} + \overrightarrow{CA})$
 $= \frac{1}{3}\overrightarrow{BC} + \frac{2}{3}\overrightarrow{CA} = -\frac{1}{3}\overrightarrow{CB} + \frac{2}{3}\overrightarrow{CA}$;
3. $\overrightarrow{AF} = \frac{1}{4}\overrightarrow{AD} = \frac{1}{4}(\overrightarrow{CD} - \overrightarrow{CA})$;
4. $\overrightarrow{OF} = -\frac{1}{3}\overrightarrow{CB} + \frac{2}{3}\overrightarrow{CA} + \frac{1}{4}\overrightarrow{CD} - \frac{1}{4}\overrightarrow{CA} = \frac{5}{12}\overrightarrow{CA} - \frac{1}{3}\overrightarrow{CB} + \frac{1}{4}\overrightarrow{CD}$.

Otbet:
$$\overrightarrow{OF} = \frac{5}{12}\overrightarrow{CA} - \frac{1}{3}\overrightarrow{CB} + \frac{1}{4}\overrightarrow{CD}$$

Разработал старший преподаватель кафедры высшей математики Н.В. Ежова.