

Раздел № **04 Дифференциальное исчисление функций одной переменной**

Тема № 08 Исследование функций

Лекция № 22 Исследование на выпуклость

Учебные вопросы:

- 1. Исследование на выпуклость
- 2. Точки перегиба функции
- 3. Построение графиков функций

Литература.

- 1. Демидович Б. П. Краткий курс высшей математики, 2007, М.: Аст, Астрель
- 2. Ефимов А. В., Демидович Б. П. Сборник задач по математике для втузов. В 4-х частях. Ч.1. Линейная алгебра и основы математического анализа, 2014, М.: Альянс
- 3. Потапов А. П. Математический анализ. Дифференциальное и интегральное исчисление функций одной переменной. Часть 2. Учебник и практикум для академического бакалавриата, 2017, М.: Юрайт

TEKCT

1. Исследование на выпуклость.

Понятия выпуклости и вогнутости функции на промежутке, их геометрический смысл. Примеры. Условия выпуклости и вогнутости функции. Признаки выпуклости дифференцируемых и дважды дифференцируемых функций. Примеры выпуклых функций среди основных элементарных функций.

2. Точки перегиба функции.

Понятие точки перегиба. Примеры. Необходимое условие существования точки перегиба. Точки, подозрительные на точки перегиба.

Достаточное условие существования точки перегиба. Примеры нахождения точек перегиба функции.

3. Построение графиков функций.

Понятие асимптоты кривой на плоскости. Асимптоты графика функции: вертикальные, горизонтальные и наклонные.

Вертикальная асимптота:

$$x = x_0 \Leftrightarrow i$$
 (1)

Примеры.

Горизонтальная асимптота:

$$y = b \iff b = \lim_{x \to \infty} f(x) \tag{2}$$

Примеры.

Наклонная асимптота:

$$y = kx + b \iff \begin{cases} k = \lim_{x \to \infty} \frac{f(x)}{x} \\ b = \lim_{x \to \infty} (f(x) - kx) \end{cases}$$
 (3)

Примеры.

Общая схема исследования функции. Рекомендуемая последовательность действий:

- 1. Область определения функции D_f
- 2. Свойства

четности, нечетности,

периодичности

- 3. Точки пересечения графика с осями координат
- 4. Пределы функции на границах D_f
- 5. Промежутки непрерывности и точки разрыва
- 6. Асимптоты
- 7. Первая производная $f^{'}(x)$
- 8. Промежутки монотонности и точки экстремума
- 9. Вторая производная f''(x)
- 10. Промежутки выпуклости и точки перегиба
- 11. Таблица значений функции

- 12. График функции Γ_f
- 13. Область значений функции E_f

Примеры исследования функций и построения графиков. Кривая Γ аусса. Исследование и построение графика функции $f(x) = e^{-x^2}$.

- 1. $D_f = (-\infty; +\infty)$.
- 2. $f(-x)=e^{-(-x)^2}$ і $e^{-x^2}=f(x) \implies f(x)$ четная функция; f(x) і непериодическая функция.
- 3. $x \& 0 \Rightarrow y=1 \Rightarrow \Gamma_f \cap OY = (0;1); y \neq 0 \Rightarrow \Gamma_f \cap OX = \&$
- 4. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^{-x^2} = 0$.
- 5. f(x) непрерывна на $(-\infty; +\infty)$; точек разрыва нет.
- 6. Вертикальных асимптот нет; наклонная асимптота: y = kx + b;

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{e^{-x^2}}{x} = 0 \implies k = 0; b = \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} e^{-x^2} = 0$$

$$\implies b = 0;$$

горизонтальная асимптота: y = 0.

7.
$$f'(x) = \frac{1}{6} (e^{-x^2})' = -2x \cdot e^{-x^2}$$

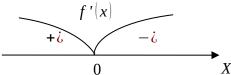
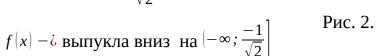



Рис. 1. Знаки первой производной

7. $|x| = 6 (e^{-x}) = -2x \cdot e^{-x}$

8. $f'(x)=0 \Leftrightarrow x=0$

- f(x) / на $(-\infty; 0]$, f(x) на $[0; +\infty)$ (Рис. 1);
- $0 \dot{\iota}$ точка *max*, $x_{max} = \dot{\iota}$ 0, $y_{max} = 1$.
- 9. $f''(x) = \frac{1}{6} (-2x \cdot e^{-x^2})' = \frac{1}{6}$ $\frac{1}{6} 2 e^{-x^2} \cdot (2x^2 - 1)$
- 10. $f''(x)=0 \iff x=\pm \frac{1}{\sqrt{2}};$

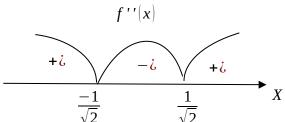


Рис. 2. Знаки второй производной

- и на $\left[\frac{1}{\sqrt{2}}; +\infty\right]; f(x) \mathcal{L}$ выпукла вверх на $\left[\frac{-1}{\sqrt{2}}; \frac{1}{\sqrt{2}}\right]$ (Рис. 2);
- точки перегиба: $x_{1,2} = \pm \frac{1}{\sqrt{2}}$, $y_{1,2} = f\left(\pm \frac{1}{\sqrt{2}}\right) = i e^{\frac{-1}{2}} = \frac{1}{\sqrt{e}}$.
- 11. Таблица значений функции:

X	0	$\pm \frac{1}{\sqrt{2}} \approx \pm 0.7$	±1	±2
у	1	$e^{\frac{-1}{2}} \approx 0.6$	$e^{-1} \approx 0,4$	$e^{-4} \approx 0.02$

- 12. График функции Γ_f (Рис. 3).
- 13. $E_f = [0; 1]$.

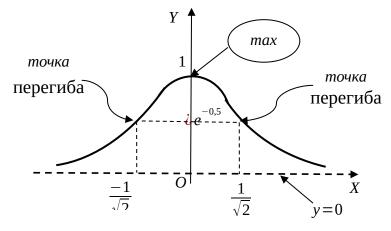


Рис. 3. График функции

Разработал доцент кафедры высшей математики

А. П. Потапов