

Раздел № 03 Введение в математический анализ

Тема № 06 Пределы и непрерывность

Практическое занятие № 14 Предел функции

Учебные вопросы:

- 1. Понятие предела функции
- 2. Задачи на предел функции

Литература.

- Математический анализ. 1. Потапов А. П. Математический анализ. Дифференциальное и интегральное исчисление функций одной переменной: учебник 2025, Юрайт. M.: URL: И практикум ДЛЯ вузов, https://urait.ru/bcode/569097
- 2. Ефимов А. В., Демидович Б. П. Сборник задач по математике для втузов. В 4-х частях. Ч.1. Линейная алгебра и основы математического анализа, 2014, М.: Альянс

Решение задач

Задача №1:

Используя определение предела функции, доказать, что:

$$\lim_{x \to 0} \frac{x^2 - 1}{2x^2 - x - 1} = 1$$

Решение:

Алгоритм доказательства предела по определению на языке ε-δ:

- 1. Записываем определение на языке $\varepsilon \delta$ с неравенствами под наш случай и данными из условия задачи.
- 2. Берем неравенство с f(x) и ε , преобразуем его. Наша цель получить новое неравенство:
- из которого следует исходное (т. е. в процессе преобразований мы можем исходное неравенство ослабить)
- которое еще и похоже по структуре на первое неравенство в определении (с \times и δ).

Например, для случая конечного предела мы должны указать такое i > 0:

$$0 < |x - x_0| < \delta \Rightarrow |x - x_0| < \iota \Rightarrow |f(x) - a| < \varepsilon$$

3. Далее надо учесть сделанные предположения и записать δ . Если никаких ограничений на икс мы не ставили, то берем в качестве $\delta = \delta$. Если такие были, то переписываем каждое в виде первого неравенства в определении и берем самую точную оценку из правых частей неравенств и δ .

Например, если предполагали, что $x_0-1 < x < x_0+1$, то записываем это в виде $|x-x_0| < 1$ и в качестве δ берем min(1,*).

В данном примере у нас случай конечного предела:

$$\lim_{x \to a} f(x) = A \iff \left\{ \varepsilon > 0 \exists \delta > 0 : x \in D_f, 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon \right\}$$

$$\lim_{x \to 0} \frac{x^2 - 1}{2x^2 - x - 1} = 1 \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 : x \in D_f, 0 < |x| < \delta \Rightarrow \left| \frac{x^2 - 1}{2x^2 - x - 1} - 1 \right| < \varepsilon$$

Преобразуем неравенство:

$$\left| \frac{x^2 - 1 - (2x^2 - x - 1)}{2x^2 - x - 1} \right| < \varepsilon$$

$$\left|\frac{x(1-x)}{(x-1)(2x+1)}\right| < \varepsilon$$

$$\left| \frac{x}{2x+1} \right| < \varepsilon$$

Так как $x \to 0$, то предположим, что оно мало: $\frac{-1}{4} < x < \frac{1}{4} \Leftrightarrow |x| < \frac{1}{4}$.

Теперь нам будет легче оценить сверху |x|:

$$\frac{-1}{2} < 2x < \frac{1}{2}$$

$$\frac{1}{2} < 2x + 1 < \frac{3}{2} \Rightarrow |2x + 1| > \frac{1}{2}$$

$$\left|\frac{x}{2x+1}\right| < \frac{|x|}{\frac{1}{2}} < \varepsilon$$

$$|x| < \frac{\varepsilon}{2}$$

Чтобы выполнить обе оценки берем наименьшую за δ : $\delta = min(\frac{\varepsilon}{2}; \frac{1}{4})$

Задача №2:

Используя определение предела функции, доказать, что:

$$\lim_{x\to 0} 3^{\frac{1}{x}}$$
 не существует

Решение:

Здесь удобнее использовать определение на языке последовательностей. Из него следует, что, если показать, что разные последовательности $[x_n]$ и $[x_n]$ приводят к разным значениям предела, то это значит, что он не существует.

Рассмотрим последовательности $[x_n] = \left\{\frac{1}{n}\right\} \to 0$ и $[x_n'] = \{-\frac{1}{n}\} \to 0$.

Тогда
$$\lim_{n\to\infty} 3^{\frac{1}{x_n}} = \lim_{n\to\infty} 3^n = +\infty$$
, а $\lim_{n\to\infty} 3^{\frac{1}{x_n}} = \lim_{n\to\infty} 3^{-n} = 0$

Получили разные значения, значит $\lim_{x\to 0} 3^{\frac{1}{x}}$ не существует

Задача №3:

Используя определение предела функции, доказать, что:

$$\lim_{\frac{x \to -\infty}{x^2 - 3x + 2}} x^3 + 2x$$

Решение:

$$\lim_{x \to -\infty} f(x) = -\infty \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 : x \leftarrow \frac{1}{\delta} \Rightarrow f(x) \leftarrow \frac{1}{\varepsilon}$$

Составим неравенство $\frac{x^3+2x}{x^2-3x+2} \leftarrow \frac{1}{\varepsilon}$, где $\varepsilon > 0$ и попытаемся найти число $\delta > 0$ такое, что для всех значений $x \leftarrow \frac{1}{\delta}$ это неравенство будет выполнено. Рассматривая только x < 0, получим:

$$\frac{x^3 + 2x}{x^2 - 3x + 2} = \frac{x(x^2 + 2)}{x^2 - 3x + 2}$$

Распишем отдельно:

$$\frac{x^2+2}{x^2-3x+2} = 1 - 3 \lor x \lor \frac{\zeta}{x^2-3x+2} \zeta$$

Тогда (для x < 0) выполняется неравенство:

$$3 \lor x \lor \frac{\dot{\iota}}{x^2 - 3x + 2} < 3 \lor x \lor \frac{\dot{\iota}}{x^2} < \frac{3}{\dot{\iota} x \lor \dot{\iota} \dot{\iota}} \dot{\iota} \dot{\iota}$$

Отсюда, если взять, например, $x \leftarrow 6$, то получим, что $3 \lor x \lor \frac{\dot{c}}{x^2 - 3x + 2} < \frac{1}{2} \dot{c}$.

Тогда $\frac{x^2+2}{x^2-3x+2} > \frac{1}{2}$ и, следовательно, для этих же значений x верно $\frac{x^3+2x}{x^2-3x+2} < \frac{x}{2} \leftarrow \frac{1}{2\delta}$.

$$\frac{-1}{2\delta} \leftarrow \frac{1}{\varepsilon} \Longleftrightarrow \frac{2}{\varepsilon} < \frac{1}{\delta}$$

Теперь, если положить $\frac{1}{\delta} = max(6,\frac{2}{\varepsilon}) \Longleftrightarrow \delta = \frac{1}{max(6,\frac{2}{\varepsilon})}$, то для всех значений

 $x \leftarrow \frac{1}{\delta}$ неравенство $\frac{x^3 + 2x}{x^2 - 3x + 2} \leftarrow \frac{1}{\varepsilon}$, будет тоже выполнено.

Разработал доцент кафедры высшей математики

Р. В. Давыдов