§ 7. Предел

6. 1. Основные формулы для решения задач

Первый замечательный предел $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Второй замечательный предел $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$.

Следствия замечательных пределов

$$1. \lim_{x\to 0} \frac{\arcsin x}{x} = 1.$$

2.
$$\lim_{x\to 0} \frac{\log_a(1+x)}{x} = \log_a e = \frac{1}{\ln a}$$
.

3.
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$
.

4.
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a$$
.

5.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

6.
$$\lim_{x \to 0} \frac{(1+x)^{\mu} - 1}{x} = \mu.$$

Сравнение бесконечно малых функций

Определение. Пусть функции $\alpha(x)$ и $\beta(x)$ являются бесконечно малыми при $x \to a$.

Определение. Если существует $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = C \neq 0, \infty$, то $\alpha(x)$ и $\beta(x)$ называются бесконечно малыми одного порядка при $x\to a$.

Определение. Если существует $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = 0$, то $\alpha(x)$ называется величиной более высокого порядка малости, чем $\beta(x)$ при $x\to a$.

Обозначение: $\alpha(x) = o(\beta(x))$ при $x \rightarrow a$ ($\alpha(x)$ есть o малое от $\beta(x)$).

Например, $\sin^2 2x$ имеет более высокий порядок малости, чем x при $x \rightarrow 0$ (или $\sin^2 2x = o(x)$ при $x \to 0$), поскольку $\lim_{x \to 0} \frac{\sin^2 2x}{x} = \lim_{x \to 0} \left(\frac{\sin 2x}{2x}\right)^2 \cdot 4x = 0$.

Определение.

несравнимыми при $x \rightarrow a$.

Определение. Если существует $\lim_{x\to a}\frac{\alpha(x)}{\beta(x)}=1$, то $\alpha(x)$ и $\beta(x)$ называются эквивалентными бесконечно малыми при $x \rightarrow a$.

Обозначение: $\alpha(x) \sim \beta(x)$ при $x \rightarrow a$.

Свойства эквивалентных бесконечно малых

Теорема. (теорема о замене эквивалентными в произведении и отношении). Если $\alpha_1(x)$, $\alpha_2(x)$, $\beta_1(x)$, $\beta_2(x)$ являются бесконечно малыми при $x \to a$ и $\alpha_1(x) \sim \beta_1(x)$, $\alpha_2(x) \sim \beta_2(x)$ при $x \to a$, то 1) $\alpha_1(x) \cdot \alpha_2(x) \sim \beta_1(x)$. $\beta_2(x)$;

2)
$$\frac{\alpha_1(x)}{\alpha_2(x)} \sim \frac{\beta_1(x)}{\beta_2(x)}$$
 при $x \to a$; 3) $\lim_{x \to a} \frac{\alpha_1(x)}{\alpha_2(x)} = \lim_{x \to a} \frac{\beta_1(x)}{\beta_2(x)}$.

Теорема. Для того чтобы бесконечно малые функции $\alpha(x)$ и $\beta(x)$ были эквивалентными при $x \rightarrow a$, необходимо и достаточно, чтобы при $x \rightarrow a$ выполнялось одно из равенств $\alpha(x) - \beta(x) = o(\alpha(x))$ или $\alpha(x) - \beta(x) = o(\beta(x))$.

Таблица эквивалентных бесконечно малых функций

Пусть функция $\alpha = \alpha(x) \rightarrow 0$ при $x \rightarrow a$. Тогда

$$\sin \alpha \sim \alpha$$
, (1) $1 - \cos \alpha \sim \alpha^2/2$, (2)
 $tg \alpha \sim \alpha$, (3) $\arcsin \alpha \sim \alpha$, (4)
 $arctg\alpha \sim \alpha$, (5) $e^{\alpha} - 1 \sim \alpha$, (6)

$$tg \alpha \sim \alpha,$$
 (3) $arc \sin \alpha \sim \alpha,$ (4)

$$arctg\alpha \sim \alpha,$$
 (5) $e^{\alpha} - 1 \sim \alpha,$

$$ln(1+\alpha) \sim \alpha,$$
 (7) $(1+\alpha)^{\mu} - 1 \sim \mu\alpha.$ (8)

Свойства символа о

Пусть $\beta(x) \rightarrow 0$ при $x \rightarrow a$.

- **1.** $o(\beta) \pm o(\beta) = o(\beta)$.
- **2.** $o(c\beta) = o(\beta)$, $co(\beta) = o(\beta)$ и $o(c\beta + o(\beta)) = o(\beta)$ для $\forall c \neq 0$.
- **3.** $(o(\beta))^n = o(\beta^n)$ и $\beta^n o(\beta) = o(\beta^{n+1})$ при $\forall n \in \mathbb{N}$.

Асимптотические разложения бесконечно малых функций

Пусть функция $\alpha = \alpha(x) \rightarrow 0$ при $x \rightarrow a$. Тогда

$$\sin \alpha = \alpha + o(\alpha), \qquad (9) \qquad 1 - \cos \alpha = \alpha^2 / 2 + o(\alpha^2), \qquad (10)$$

$$\operatorname{tg} \alpha = \alpha + o(\alpha),$$
 (11) $\arcsin \alpha = \alpha + o(\alpha),$ (12)

$$arctg\alpha = \alpha + o(\alpha),$$
 (13) $e^{\alpha} - 1 = \alpha + o(\alpha)$

$$\ln(1+\alpha) = \alpha + o(\alpha),$$
 (15) $(1+\alpha)^{\mu} - 1 = \mu\alpha + o(\alpha).$ (16)

Правила вычисления пределов.

- **1.** В отсутствии неопределённости предел вычисляется с помощью теорем о пределах и непрерывности функций (теоремы 2.2, 4.3 4.5, замечание 2.2).
- **2.** Предел выражения, представляющего неопределённость 0/0 или $0\cdot\infty$ вычисляется с помощью теоремы о замене эквивалентными бесконечно малыми, при этом применяется таблица эквивалентных бесконечно малых функций.
- **3.** Для вычисления предела неопределённого выражения, содержащего сумму или разность бесконечно малых или бесконечно больших функций применяется таблица асимптотических разложений.

6.2. Образцы задач с решениями

 $3adaчa\ 1.$ Вычислить предел $\lim_{x\to +\infty} \frac{\sqrt{4x^2+3x+2}}{3x-1}$

Решение. Выносим переменную x в наивысшей степени в числителе и знаменателе и производим сокращения.

$$\lim_{x \to +\infty} \frac{x\sqrt{4 + \frac{3}{x} + \frac{2}{x^2}}}{x\left(3 - \frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{\sqrt{4 + \frac{3}{x} + \frac{2}{x^2}}}{\left(3 - \frac{1}{x}\right)} = \frac{2}{3}.$$

Задача 2. Вычислить предел $\lim_{x\to 0} \frac{(1-e^{2x}) \operatorname{tg} 3x}{\ln^2 (1+x)}$. Воспользуемся

таблицей эквивалентных бесконечно малых и заменим данные бесконечно малые на более простые эквиваленты, от чего величина предела не меняется. $1 - e^{-2x} \sim 2x$; $tg3x \sim 3x$; $ln(1+x) \sim x$.

Получаем $\lim_{x\to 0} \frac{2x3x}{x^2} = 6.$

 $3a\partial a + 3$. Вычислить предел $A = \lim_{x \to 0} (1 + \operatorname{tg} 3x)^{2/x}$.

Логарифмируем предел $\ln A = \lim_{x\to 0} \frac{2}{x} \ln \left(1 + tg 3x\right)$ и заменим данную бесконечно малую на более простой эквивалент, от чего величина предела не меняется

 $\ln(1+tg\,3x) \sim tg\,3x \sim 3x$. Тогда $\ln A = \lim_{x\to 0} \frac{2}{x} 3x = 6$. Отсюда $A = e^6$.

1. $3a\partial a 4a$ 4. Сравните бесконечно малые $\alpha = 1 \left(n - 1x^2 \right)$ и $\beta = 2x^2 - 5x$ при $x \to 0$. Решение. Вычисляем предел отношения бесконечно малых α/β , заменяя данные бесконечно малые на более простые эквиваленты. По величине предела делаем суждение о сравнении. $\lim_{x\to 0} \frac{\alpha}{\beta} = \lim_{x\to 0} \frac{-3x^2}{2x^2 - 5x} = \lim_{x\to 0} \frac{-3x}{2x - 5} = 0$. Бесконечно малая α имеет высший порядок малости, чем бесконечно малая β .

Задача 5. Укажите значение параметра λ , при котором бесконечно малые $\alpha = \sqrt{1 + \lambda x} - 1$ и $\beta = x + x^2$ будут эквивалентными при $x \to 0$. *Решение*. Вычисляем предел отношения бесконечно малых и подбираем значение параметра так, чтобы предел был равен 1.

$$\lim_{x\to 0} \frac{\alpha}{\beta} = \lim_{x\to 0} \frac{\sqrt{1+\lambda x}-1}{x+x^2} = \lim_{x\to 0} \frac{\frac{1}{2}\lambda x}{x+x^2} = \lim_{x\to 0} \frac{\frac{1}{2}\lambda}{1+x} = \frac{\lambda}{2} = 1. \text{ Отсюда } \lambda = 2$$

6.3. Задачи для решения

Задача 1. Вычислить предел

1. $\lim_{x \to +\infty} \frac{\sqrt{x^2 + 2x - 1}}{2x - 1}$. Otb. 1/2	3. $\lim_{x \to +\infty} \frac{2x+1}{\sqrt{9x^2+x+2}}$. Otb. 2/3
2. $\lim_{x \to +\infty} \frac{\sqrt{9x^2 - 2x + 2}}{4x + 1}$. Otb. 3/4	4. $\lim_{x \to +\infty} \frac{\sqrt{x^2 + 3x + 1}}{\sqrt{4x^2 + x + 1}}$. Otb. 1/2

Задача 2. Вычислить предел

1. $\lim_{x\to 0} \frac{1-\cos 2x}{x \ln(1+x)}$ Otb. 2	3. $\lim_{x\to 0} \frac{(1-e^{2x}) \operatorname{tg} 3x}{\ln^2 (1+x)}$. Otb6
2. $\lim_{x\to 0} \frac{1-\sqrt{3x+1}}{\ln(x+1)}$. Otb. $-3/2$	4. $\lim_{x\to 0} \frac{1-\sqrt{5x+1}}{x}$. Otb. $-5/2$

Задача 3. Вычислить предел

1. $\lim_{x\to 0} (1+\sin x)^{-3/x}$. e^{-3}	3. $\lim_{x\to 0} (1+x-x^3)^{1/x}$. Otb. e
2. $\lim_{x\to 0} (1+\sin 2x)^{1/x}$. e^2	4. $\lim_{x\to 0} (1-\sin x)^{2/x}$. Otb. e^{-2}

Задача 4. Сравнение бесконечно малых α, β при $x \to 0$.

- 1. Сравните бесконечно малые $\alpha = x^2 + \sin^3 x$ и $\beta = 1 \cos x$ при $x \to 0$. Отв. α, β — одного порядка.
- 2. Сравните бесконечно малые $\alpha = \frac{1 \cos x}{x}$ и $\beta = \sin x$ при $x \to 0$. Отв. α высшего порядка, чем β .
- 3. Сравните бесконечно малые $\alpha = \ln(1+x^2)$ и $\beta = 4x^2 3x$ при $x \to 0$. Отв. α – высшего порядка, чем β .
- 4. Сравните бесконечно малые $\alpha = 1 \cos 2x$ и $\beta = x + 2x^2$ при $x \to 0$.

Отв. α – высшего порядка, чем β .

а. Теоретические вопросы

- 1. Дайте определение понятия $\lim_{x\to a} f(x) = A$ на языке $\delta \varepsilon$.
- 2. Дайте определение понятия $\lim_{x\to a} f(x) = A$, используя понятие бесконечно малой функции при $x\to a$.
- з. Сформулируйте теорему о сжатой переменной.
- 4. Сформулируйте теорему о предельном переходе в неравенстве.
- 5. Сформулируйте теорему об ограниченности функции, имеющей предел при $x \rightarrow a$
- 6. Сформулируйте теоремы о пределах суммы, произведения и частного функций.
- 7. Сформулируйте определение понятия $\lim_{x\to a+0} f(x) = A$ на языке $\delta \varepsilon$.
- 8. Сформулируйте определение понятия $\lim_{x\to a-0} f(x) = A$ на языке $\delta \varepsilon$.
- 9. Дайте определение понятия $\lim_{x\to +\infty} f(x) = A$.
- 10. Дайте определение понятия $\lim_{x \to \infty} f(x) = A$.
- 11. Дайте определение понятия $\lim_{x\to\infty} f(x) = A$.
- 12. Напишите первый замечательный предел и пределы, связанные с ним.
- 13. Напишите второй замечательный предел и пределы, связанные с ним.
- 14. Дайте определение понятия $\lim_{x \to a} f(x) = +\infty$.
- 15. Дайте определение понятия $\lim_{x\to a} f(x) = -\infty$.
- 16. Дайте определение понятия $\lim_{x\to a} f(x) = \infty$.