Ряды Фурье

1. Определения и формулы для решения задач Определение

Рядом Фурье периодической функции
$$f(x)$$
 называется

тригонометрический ряд вида

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

коэффициенты которого определяются по формулам

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$

$$n = 0, 1, 2, \dots$$

$$n = 1, 2, \dots$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

Эти коэффициенты называются коэффициентами Фурье.

Теорема (mеорема Дирихле). Если функция f(x)

- 1) непрерывна на промежутке $[-\pi, \pi]$ или имеет на нём конечное число разрывов первого рода;
- 2) имеет на промежутке $[-\pi,\pi]$ конечное число экстремумов, то ряд Фурье сходится во всех точках этого промежутка к некоторой

функции S(x), при этом

1)
$$= \int_{S(x)}^{S(x)} S(x)$$
 во всех точках интервала $(-\pi, \pi)$, где функция $f(x)$

непрерывна;

2)
$$S(x_0) = \frac{1}{2}(f(x_0 - 0) + f(x_0 + 0))$$
, если $x_0 \in (-\pi, \pi)$ – точка разрыва первого

рода функции f(x);

3)
$$S(-\pi) = S(\pi) = \frac{1}{2} (f(-\pi) + f(\pi)).$$

Ряд Фурье четной функции содержит только свободный член и косинусы. Коэффициенты ряда определяются по формулам

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx$$

Ряд Фурье нечетной функции содержит только синусы. Коэффициенты ряда определяются по формулам

$$b_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx \, dx$$

$$n = 1, 2, ...$$

Замечание 1. Если функция f(x) не является 2π — периодической,

а задана только, то на промежутке $\left[-\pi; +\pi \right],$ то ее разложение в ряд Фурье

справедливо только для этого промежутка; вне этого промежутка значения функции и суммы ряда Фурье могут различаться.

Замечание 2. Если функция задана на неполном промежутке $[0;\pi]$

то ее можно продолжить на полный промежуток четным или $[-\pi;+\pi]$

нечетным образом. Тогда ее коэффициенты Фурье соответственно будут определяться по формулам для четной или нечетной функций, но разложение в ряд Фурье будет справедливо только для промежутка $[0;\pi]$

Разложение функции в ряд Фурье в произвольном симметричном относительно начала промежутке

Если функция
$$f(x)$$
 задана на промежутке $[-l;+l]$, то ряд Фурье

функции для этого промежутка имеет вид

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{\pi nx}{l} + b_n \sin \frac{\pi nx}{l}$$

а коэффициенты Фурье находятся по формулам

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi nx}{l} dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi nx}{l} dx$$

$$n = 1, 2, ...$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi nx}{l} dx$$

2. Образцы задач с решениями

1. Дана функция $f(x) = \begin{cases} 0, x \in [-\pi, 0), \\ 1, x \in [\pi, 0]. \end{cases}$ Разложить её в ряд Фурье.

На отрезке $[-\pi, \pi]$ функция f(x) удовлетворяет условиям Дирихле. Найдём её коэффициенты Фурье.

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} f(x) dx + \int_{0}^{\pi} f(x) dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{0} 0 \times dx + \int_{0}^{\pi} 1 \times dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{0} 0 \times dx + \int_{0}^{\pi} 1 \times dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{0} 0 \times dx + \int_{0}^{\pi} 1 \times dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} f(x) \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{0} 0 \times \sin nx dx + \int_{0}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} f(x) \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{0} 0 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{0} 0 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} 1 \times \sin nx dx \right) = \frac{1}{\pi} \left(\int$$

$$-\frac{1}{\pi n}\cos nx\Big|_0^{\pi} = \frac{1 - (-1)^n}{\pi n}$$

Для выражения
$$1-(-1)^n \qquad \qquad 1-(-1)^n = \begin{cases} 0, \, n=2k, \, k=1,2,..., \\ 2, \, n=2k-1, \, k=1,2,.... \end{cases}$$
 Итак,

$$a0=1,\ ak=0,\ b2k=0,$$
 $b_{2k-1}=rac{2}{\pi(2k-1)},\ k=1,2,\ldots$. Следовательно, для

функции f(x) получаем ряд:

$$f(x) = \frac{1}{2} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2k-1)x}{2k-1} = S(x)$$

При этом, согласно теореме Дирихле, имеем:

1)
$$S(x) = f(x)$$
 при $(-\pi, 0) \cup (0, \pi)$],

2)
$$S(0) = \frac{f(-0) + f(+0)}{2} = \frac{0+1}{2} = \frac{1}{2}$$

3)
$$S(\pm \pi) = \frac{f(-\pi) + f(\pi)}{2} = \frac{0+1}{2} = \frac{1}{2}$$

График S(x) приведён на рис. 1.

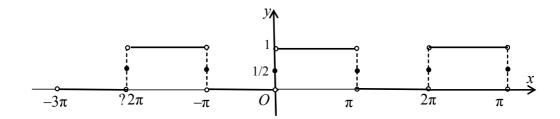


Рис.1.

2. Разложить функцию $f(x) = \pi - |x|, x \in [-\pi, \pi]$, в ряд Фурье.

Pешение. График функции f(x) приведен на рис.2.

 Φ ункция f(x) удовлетворяет условиям Дирихле $[-\pi,\pi]$ и является чётной (рис.1), поэтому её коэффициенты Φ урье $b_n=0$. Вычислим коэффициенты a_n , n=0,1,2,...

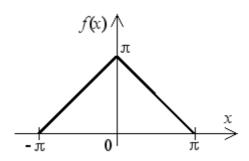


Рис.2.

$$a_0 = \frac{2}{\pi} \int_0^{\pi} (\pi - x) dx = \frac{2}{\pi} \left(-\frac{(\pi - x)^2}{2} \frac{1}{2} \right)_0^{\pi} = \pi$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} (\pi - x) \cos nx \, dx =$$

$$= \frac{2}{\pi} (\pi - x) \frac{\sin nx}{n} \Big|_{0}^{\pi} + \frac{2}{\pi n} \int_{0}^{\pi} \sin nx \, dx = \frac{-2}{\pi n^{2}} \cos nx \Big|_{0}^{\pi} =$$

$$= \frac{2}{\pi n^{2}} (1 - \cos n\pi) = \frac{2}{\pi n^{2}} [1 - (-1)^{n}].$$

Таким образом,
$$a0=\pi, \quad a2k=0, \ \dots,$$

$$a_{2k-1}=\frac{4}{\pi(2k-1)^2}, \ k=1,\,2,\,\dots \ .$$
 Ho

тогда согласно теореме Дирихле,

$$\pi - |x| = \frac{\pi}{2} + \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\cos(2k-1)x}{(2k-1)^2}, x \in [-\pi, \pi].$$

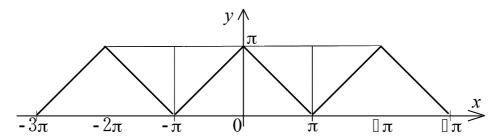


Рис. 3. График суммы ряда Фурье функции $f(x) = \pi - |x|$

График суммы ряда Фурье приведён на рис. 3.

3. Разложить в ряд Фурье функцию $f(x) = x^2$, заданную на отрезке [-4, 4]. Данная функция является чётной. Для неё ряд Фурье будет иметь вид:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{\pi nx}{4}$$
; , $n = 1, 2, \dots$

$$a_0 = \frac{2}{4} \int_0^4 x^2 dx = \frac{32}{3} \quad a_n = \frac{2}{4} \int_0^4 x^2 \cos \frac{\pi nx}{4} dx$$

Вычисляя соответствующие интегралы по частям, находим

$$a_{n} = \frac{1}{2} \left(x^{2} \frac{4}{\pi n} \sin \frac{\pi nx}{4} \Big|_{0}^{4} - \frac{8}{\pi n} \int_{0}^{4} x \sin \frac{\pi nx}{4} dx \frac{1}{y} \right) =$$

$$-\frac{4}{\pi n} \left(-x \frac{4}{\pi n} \cos \frac{\pi nx}{4} \Big|_{0}^{4} + \frac{4}{\pi n} \int_{0}^{4} \cos \frac{\pi nx}{4} dx \frac{1}{y} \right) = \frac{64}{\pi^{2} n^{2}} \cos \pi n = \frac{64}{\pi^{2} n^{2}} (-1)^{n}$$

Итак, функция $f(x) = x^2$ на отрезке [-4, 4] в силу теоремы Дирихле разлагается в ряд Фурье

$$x^{2} = \frac{16}{3} + \frac{64}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos \frac{\pi nx}{4}, x \in [-4, 4].$$

График суммы ряда Фурье приведён на рис. 4.

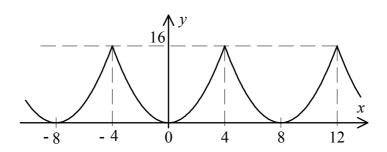


Рис. 4

4. Чему равна сумма S(x) ряда Фурье, составленного для функции

$$y=f\left(x\right) =x^{2}$$
 на промежутке $\left[-\pi ,\pi \right] ,$ вычисленная в точке

? Разлагать функцию в ряд Фурье не нужно. $x = \frac{3\pi}{2}$

Pешениe. Функция является периодической поэтому ее $S\left(x
ight)$ 2π —

значение в точке $x = \frac{3\pi}{2}$ такое же, как в точке $\frac{3\pi}{2} - 2\pi = -\frac{\pi}{2}$, а ее

значение в этой точке равно значению функции f(x) . Тогда

$$S\left(-\frac{\pi}{2}\right) = f\left(-\frac{\pi}{2}\right) = \left(-\frac{\pi}{2}\right)^{2} = \frac{\pi^{2}}{4}$$

3.Задачи для решения

- 1. Разложите в интервале $(0;\pi)$ по косинусам кратных дуг функцию v=x .
- 2. Разложите в ряд Фурье в интервале $(-\pi;\pi)$ функцию y=x.
- 3. Разложите в ряд Фурье в интервале $(-\pi;\pi)$ функцию y=|x|
- 4. Разложите в интервале $(0;\pi)$ по синусам кратных дуг функцию

y = -2x

5. Разложите в ряд Фурье в промежутке $(-\pi;\pi)$ функцию

 $y = \operatorname{sign} x = \begin{bmatrix} -1 & \text{при } x < 0, \\ 0 & \text{при } x = 0, \\ 1 & \text{при } x > 0. \end{bmatrix}$

6. Разложите в ряд Фурье в промежутке [0,1] по косинусам функцию

y = 1 - x

7. Разложите в ряд Фурье в промежутке (-l;l) по синусам функцию

y = 1 - x

- 8. Разложите в ряд Фурье в промежутке [0,1] по косинусам функцию
- y = x . 9. Разложите в ряд Фурье в промежутке [0,1] по косинусам функцию

y = 1 - x

10. Разложите в ряд Фурье в промежутке (-l;l) по синусам функцию

y = 1 - x

11. Чему равна сумма ряда Фурье, составленного для функции , вычисленная в точке $[-\pi,\pi]$? Разлагать $x = 2\pi$ функцию в ряд Фурье не нужно. 12. Чему равна сумма ряда Фурье, составленного для функции промежутке [- π , π], вычисленная в точке $x = 3\pi$? Разлагать функцию в ряд Фурье не нужно. функцию y = 2x + 3. 13. Разложите в ряд Фурье в промежутке $(-\pi;\pi)$ 14. Разложите в ряд Фурье в промежутке функцию $(-\pi;\pi)$ 15. Разложите в ряд Фурье в промежутке функцию $(-\pi;\pi)$ 16. Разложите в ряд Фурье в промежутке функцию 17. Разложите в ряд Фурье в промежутке по косинусам кратных (-l;l)дуг функцию y = |x|функцию y = 1, 18. Разложите в ряд Фурье в промежутке (-l;l) $-l \le x \le 0$ y = -1 , если $0 < x \le l$. 19. Разложите в ряд Фурье в промежутке по косинусам [0;l]кратных дуг функцию 20. Разложите в ряд Фурье в промежутке 21. Разложите в ряд Фурье в промежутке (-1;1) функцию 22. Разложите в ряд Фурье в промежутке (0,2) по косинусам кратных дуг функцию функцию v = 2 - x

Ответы

1.
$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}.$$

2.
$$2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin nx}{n}$$

3.
$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}$$

4.
$$4\sum_{n=1}^{\infty} (-1)^n \frac{\sin nx}{n}.$$

5.
$$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1}.$$

6.
$$\frac{\pi}{2} + \frac{4}{\pi} \sum_{m=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}.$$

$$7. \qquad \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin n\pi x}{n}$$

8.
$$\frac{1}{2} - \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}$$

9.
$$\frac{1}{2} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2n-1)\pi x}{(2n-1)^2}$$

10.
$$\frac{2l}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} \sin \frac{n\pi x}{l}$$

12.
$$\pi^2$$

13.
$$3+4\sum_{n=1}^{\infty}(-1)^{n+1}\frac{\sin nx}{n}.$$

14.
$$2 + 6 \sum_{n=1}^{\infty} (-1)^n \frac{\sin nx}{n}$$

15.
$$\frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}$$

16.
$$\frac{2}{\pi} + \frac{4}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\cos 2nx}{4n^2 - 1}$$

$$\frac{l}{2} - \frac{4}{l\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2n-1)\frac{\pi x}{l}}{(2n-1)^2}$$

18.
$$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)} \sin \frac{(2n-1)\pi x}{l}.$$

19.
$$y = \frac{l}{2} - \frac{4l}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2n-1)\frac{\pi x}{l}}{(2n-1)^2}$$

20.
$$1 + 4\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin nx}{n}$$

21.
$$\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n\pi x$$
.

$$1 + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2n-1) \frac{\pi x}{2}}{(2n-1)^2}$$

4. Теоретические вопросы

1. Запишите ряд Фурье нечетной функции для промежутка [-l,l]2. Запишите ряд Фурье четной функции для промежутка [-l,l]3. Запишите ряд Фурье функции f(x) для промежутка $[-\pi,\pi]$. 4. Запишите формулы для коэффициентов ряда Фурье функции промежутка f(x) ДЛЯ 5. Запишите формулы для коэффициентов ряда Фурье функции промежутка [-l, l]6. Запишите формулы для коэффициентов ряда Фурье четной функции 7. Запишите разложение функции f(x) в ряд Фурье по синусам в промежутке $[0,\pi]$. 8. Запишите разложение функции f(x) в ряд Фурье по косинусам в промежутке $[0,\pi]$ 9. Сформулируйте условия Дирихле разложимости функции в ряд Фурье на промежутке $[-\pi,\pi]$ 10. К чему сходится ряд Фурье функции f(x) для промежутка $[-\pi,\pi]$ в

11. Функция f(x) в промежутке разложена в ряд Фурье по синусам. $[0,\pi]$

Запишите формулы для коэффициентов ряда.

- 12. Функция f(x) в промежутке $[0,\pi]$ разложена в ряд Фурье по
 - косинусам. Запишите формулы для коэффициентов ряда.
- 13. Какая система функций называется ортогональной на отрезке [a;b]?
- 14. Напишите выражение для коэффициентов ряда Фурье по произвольной ортогональной системе функций на отрезке [a;b].
- 15. Чему равняется сумма ряда Фурье в точках разрыва функции f(x)
- 16. Функция f(x) разложена на промежутке (-l;l) в ряд Фурье по синусам.
 - Напишите формулы для коэффициентов разложения.
- 17. Функция f(x) разложена на промежутке (-l;l) в ряд Фурье по косинусам. Напишите формулы для коэффициентов разложения.
- 18. Сформулируйте достаточные условия того, чтобы значение суммы ряда Фурье для функции f(x) в точке совпадало со значением самой функции.
- 19. Пусть функция f(x) на промежутке удовлетворяет условиям f(x) Дирихле. Запишите формулу, выражающую свойство периодичности суммы её ряда Фурье.
- 20. Если функция удовлетворяет условиям Дирихле на промежутке промежутке (- l;l), то чему равна сумма ряда Фурье этой функции на концах промежутка?
- 21. Напишите коэффициенты разложения функции f(x) в ряд Фурье в произвольном промежутке [a; a+2l].
- 22. Каким образом нужно продолжить функцию f(x), заданную на промежутке , чтобы её разложение в ряд Фурье на промежутке не содержало косинусов? (-l;l)
- 23. Каким образом нужно продолжить функцию f(x), заданную на промежутке промежутке (0,l), чтобы её разложение в ряд Фурье на промежутке не содержало синусов?

Знания и умения, которыми должен владеть студент по разделам «Ряды»

<u>Знания на уровне понятий, определений, описаний, формулировок</u>

Числовой ряд. Сумма, остаток ряда. Сходимость ряда.

- 1. Свойства сходящихся рядов.
- 2. Знакочередующийся ряд.
- 3. Абсолютная и условная сходимости ряда.
- 4. Сочетательное свойство сходящихся рядов.
- 5. Переместительное свойство абсолютно сходящихся рядов.
- 6. Функциональный ряд; его область сходимости.
- 7. Степенной ряд; его промежуток и радиус сходимости.
- 8. Непрерывность суммы степенного ряда, почленное дифференцирование и интегрирование степенного ряда.
- 9. Ряд Тейлора.
- 10. Степенной ряд в комплексной области. Круг и радиус сходимости.
- 11. Применение степенных рядов для приближенного вычисления значений функций, неберущихся интегралов, неявных функций, решения дифференциальных уравнений.

Знания на уровне доказательств и выводов

- 1. Свойства остатка сходящегося ряда.
- 2. Необходимое условие сходимости ряда.
- 3. Признаки сходимости и расходимости рядов с положительными членами: признак сравнения в конечной и предельной формах, Даламбера, радикальный Коши, интегральный Маклорена-Коши (выборочно).
- 4. Обобщёный гармонический ряд. Исследование его сходимости.
- 5. Признак Лейбница сходимости знакочередующегося ряда. Оценка остатка ряда.
- 6. Необходимое и достаточное условие разложимости функции в ряд Тейлора на основе формулы Тейлора.

- 7. Теорема Абеля о сходимости степенного ряда.
- 8. Разложения в степенной ряд основных элементарных функций (выборочно).
- 9. Формулы Эйлера, связывающие показательную и тригонометрические функции.

Умения в решении задач

Студент должен уметь:

- 1. Устанавливать сходимость или расходимость ряда с положительными членами.
- 2. Устанавливать сходимость или расходимость, условную или абсолютную сходимость ряда с членами любого знака.
- 3. Находить радиус и промежуток сходимости степенного ряда.
- 4. Разлагать функции в степенной ряд.
- 5. Приближённо вычислять сумму ряда путём замены её частичной суммой с оценкой остатка ряда с заданной точностью.
- 6. Приближённо вычислять интегралы и находить приближённое решение дифференциальных уравнений с помощью степенных рядов.