Вычисление криволинейного интеграла 2-го рода по формуле Грина

1. Определения и формулы для решения задач

Определение. Плоская область D называется односвязной, если для любого самонепересекающегося замкнутого контура Γ D

ограниченная им область D_1 также расположена в D.

Формула Грина. Пусть D — замкнутая односвязная область плоскости Oxy, ограниченная кусочно-гладким контуром Γ , а функции P(x,y) и Q(x,y) непрерывны в области D и имеют там

непрерывные частные производные $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$. Тогда

$$\oint_{\Gamma} P(x,y) dx + Q(x,y) dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Эта формула называется формулой Γ рина она связывает двойной интеграл по области D с криволинейным интегралом по границе Γ этой области. Предполагается, что обход контура Γ совершается в положительном направлении, т.е. область D при обходе контура остаётся слева

2. Образец задачи с решением

1. Используя формулу Грина, вычислить интеграл: $I = \oint_{\Gamma} (x - 2y) dx + (3x - y) dy$

O(0,0), A(2,0), B(0,2). Направление движения по Γ происходит против часовой стрелки.

Решение. Из условий задачи находим

$$P(x,y) = x - 2y, Q(x,y) = 3x - y, \frac{\partial Q}{\partial x} = 3, \frac{\partial P}{\partial y} = -2, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 5.$$

$$I = \int_{\Delta OAB} \int dx dy = 5S_{\Delta OAB} = 5.2 = 10.$$

2. С помощью формулы Грина вычислить криволинейный интеграл по границе круга D:

$$I = \oint_{I} (x^{2} + 4y) dx + (4x + y^{2}) dy$$

$$x^{2} + y^{2} \le a^{2}$$

в положительном направлении.

Решение.

 $P = x^2 + 4y; Q = 4x + y^2$. Тогда Из условий задачи имеем

$$I = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_{D} (4 - 2) dx dy =$$

$$= 2 \iint_{D} dx dy \text{ (4-2)} dx dy = 2\pi^{-2}$$

3. Задачи для решения

1. С помощью формулы Грина вычислить криволинейный интеграл

$$\oint_{l} (x+2y) dx + (3x+y^{2}) dy , l - \text{граница круга}$$
 $x^{2} + y^{2} \le a^{2}$.

7.
$$\oint_{l} (x-y)dx + (x+3y)dy$$
 , l — граница квадрата $-1 \le x \le 1$, $-1 \le y \le 1$. 8. $\oint_{l} (x+y)dx + (x-2y)dy$, l — граница квадрата $-1 \le x \le 1$, $-1 \le y \le 1$. 9. $\oint_{l} (x^2+2y)dx + (2x-y^2)dy$, l — граница квадрата $-1 \le x \le 1$, $-1 \le y \le 1$. 10. $\oint_{l} (x+4y)dx + (x+y^2)dy$, l — граница верхнего полукруга $x^2+y^2 \le 4$. 11. $\oint_{l} (x+5y)dx + (2x+y^2)dy$, l — граница верхнего полукруга $x^2+y^2 \le 4$. 12. $\oint_{l} (x-3y)dx + (2x+y^3)dy$, l — граница верхнего полукруга $x^2+y^2 \le 4$. $f(x-5y)dx + (x+y^3)dy$, $f(x-5y)dx + (x+y^3)dx$, $f(x-5y)dx + (x+y^3)dx$

$$0 \le y \le 1.$$

15. $\int_{l}^{l} (x^3 - 2y) dx + (x + y^3) dy$, l — граница прямоугольника $0 \le x \le 2;$

16.
$$\oint_{l} (x^2 - 4y) dx + (x + y^3) dy, \quad l = 1$$
 прямоугольника $0 \le x \le 2;$ $0 \le y \le 1.$

 $0 \le y \le 1$.

17.
$$\oint_{l} (x^2 - 4y) dx + (x + 2y^2) dy, \qquad l = 1$$
 прямоугольника $0 \le x \le 2;$ $0 \le y \le 2.$

18.
$$\oint_{l} (x^{2} - 3y) dx + (x - 2y^{2}) dy, \qquad l = 1$$
 — граница прямоугольника $0 \le x \le 2$;

$$0 \le y \le 2$$
.

$$0 \le y \le 2$$
.
19. $\int_{l} (2x^2 - y)dx + (x + y^2)dy$, l — граница прямоугольника $0 \le x \le 2$; $0 \le y \le 2$.

20.
$$\oint_{l} (x^2 - 2y) dx + (x - y^2) dy, \quad l = 1$$
 прямоугольника $0 \le x \le 2;$ $0 \le y \le 2.$

Ответы

1	7. 8.	13. 12.
πa^2	8. 0.	14. 8.
2.	9. 0.	15. 6.
$3\pi a^2$	10.	16. 10.
3. $-2\pi a^2$	-6π	17. 20.
4	11. - 6π	18. 16.
- 1		19.8
5. 1.	$12. \\ 10\pi$	20. 12.
6. 5.		

22.

4. Теоретические вопросы

- 1. Запишите формулу Грина.
- 2. Как вычислить площадь плоской области D с помощью криволинейного интеграла по границе D этой области?
- 3. Сформулируйте необходимые и достаточные условия полного дифференциала для дифференциального выражения P(x,y)dx + Q(x,y)dy.
- 4. Какие условия, накладываемые на функции, обеспечивают применимость формулы Грина?
- 5. Сформулируйте определение криволинейного интеграла 1-го рода (по длине дуги).
- 6. Каков физический смысл криволинейного интеграла 1-го рода (по длине дуги)?
- 7. Как выражается длина дуги с помощью криволинейного интеграла 1-го рода? Как вычислить длину дуги линии, если линия задана параметрически уравнениями x = x(t), y = y(t)
- 9. Запишите формулу для вычисления массы линии, если плотность распределения массы задана формулой $\delta = \delta(x, y, z)$
- 10. Что такое среднее значение функции f(x, y, z) на дуге линии

 $L = \widetilde{AB}$

- 11. Запишите формулу для вычисления криволинейного интеграла 1-го рода (по длине дуги) в случае плоской линии, заданной явным уравнением v = v(x)

23.