§ 14. Тесты по теории вероятностей

Тест 1

- 1. Если $A \subset B$, то чему равно AB?
- 2. Сформулируйте классическое определение вероятности.
- 3. События A, B, C взаимно независимы. $P(A) = P(B) = P(C) = \frac{1}{2}$. Найдите P(A+B+C).
- 4. Испытываются независимо 3 прибора. Вероятность выхода из строя первого равна $p_1=0.3$, второго $p_2=0.4$, третьего $p_3=0.5$. Найти вероятность того, что хотя бы один из них выйдет из строя.
- 5. n=4 орудия независимо выстрелили по цели. Вероятность попадания в цель для каждого орудия равна p=0.4. Найти вероятность, что в цель попадёт точно одно орудие.
- 6. Партия деталей изготовлена тремя заводами. Вероятность брака на первом заводе равна $p_1=0.01$, на втором $p_2=0.02$, на третьем $p_3=0.03$. 1-й завод поставил $n_1=40\%$ продукции, 2-й $n_2=30\%$, 3-й $n_3=30\%$. Из партии для контроля взята случайная деталь. Найти вероятность того , что она бракованная.
- 7. С помощью функции распределения одномерной случайной величины найдите вероятность $P(a \le X < b)$?
- 8. Случайная величина X распределена по геометрическому закону с параметром p=1/2. Найдите M[2X+1].
- 9. Запишите формулу, выражающую дисперсию для дискретного закона распределения $P(X=x_k)=p_k; k=1,...,n$.

10.
$$f(x) = \begin{cases} 5x^4; x \in [0;1] \\ 0; x \notin [0;1] \end{cases}$$
. Вычислите $P\left(\frac{1}{2} \le X \le 2\right)$.

- 11.Случайная величина X распределена равномерно на [0;10]. Найдите $P(2 \le X \le 5)$.
- 12.3апишите плотность вероятности для нормального закона $N(m,\sigma)$.
- 13.3апишите плотность вероятности двумерной случайной величины, распределённой равномерно в области D.
- 14. Если случайные величины X и Y независимы, чему равен их коэффициент корреляции ρ_{xy} ?

- 15.Как вычислить вероятность $Pig((X_1, X_2, X_3) \in D ig)$ попадания 3-х мерной непрерывной случайной величины (X_1, X_2, X_3) в 3-х мерную область D?
- 16. Какая случайная величина называется центрированной и нормированной?

Ответы к тесту 1

- 1. *A*.
- 2. Вероятность события равна отношению числа случаев, благоприятствующих событию, к общему числу случаев.
- 3. $P(A+B+C)=1-(1/2)^3=7/8$ $P(A+B+C)=1-(1/2)^3=7/8$.
- 4. $p = 1 0.7 \cdot 0.6 \cdot 0.5 = 0.79$.
- 5. $4 \cdot 0.4 \cdot 0.6^3 \approx 0.35$.
- 6. $0.4 \cdot 0.01 + 0.3 \cdot 0.02 + 0.3 \cdot 0.03 = 0.019$.
- 7. $P(a \le X < b) = F_X(b) F_X(a)$.
- 8. 5.

9.
$$DX = \sum_{k=1}^{n} (x_k - m_X)^2 p_k$$
.

- 10. 31/32.
- **11**. 3/10.

12.
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-m_X)^2}{\sigma_X^2}\right]$$
.

13.
$$f_{XY}(x,y) = \frac{1}{S_D}$$
 при $(x,y) \in D$; $f_{XY}(x,y) = 0$ при $(x,y) \notin D$; $S_D -$ площадь области D .

14. 0.

15.
$$P((X_1, X_2, X_3) \in D) = \iiint_D f(x_1, x_2 x_3) dx_1 dx_2 dx_3$$
.

16.
$$\overset{\circ}{X} = (X - m_X)/\sigma_X$$
.

Тест 2

- 1. Чему равна вероятность суммы событий, составляющих полную группу?
- 2. Дано: $P(AB) = \frac{1}{2}$, $P(A\overline{B}) = \frac{1}{4}$. Найти P(B/A).

- 3. Какие n событий называются взаимно независимыми?
- 4. Два сообщения посылаются независимо по двум каналам связи. Вероятность, что первое сообщение дойдет до адресата, равна $p_{\rm l}=0.5$, а второе $p_{\rm 2}=0.3$. Найти вероятность, что хотя бы одно сообщение дойдет до адресата.
- 5. Испытываются 3 прибора на надежность. Вероятность выхода из строя каждого равна 0.3. Найти вероятность, что выйдет из строя не более одного прибора.
- 6. В цеху два типа станков. Станков 1-го типа 30%, 2-го типа 70%. Для станков 1-го типа требуется переналадка в течение времени T с вероятностью 0.5, а для станков 2-го типа с вероятностью 0.3. Найти вероятность, что в течение времени T произвольный станок цеха потребует переналадки.
 - 7. Запишите геометрический закон распределения и объясните смысл входящих в него величин.
 - 8. Случайная величина X задана рядом распределения:

$$\mathsf{P}(\mathit{X}=1)=1/4$$
 , $\mathsf{P}(\mathit{X}=2)=1/3$, $\mathsf{P}(\mathit{X}=3)=5/12$. Вычислите m_{X} .

9. Что такое начальный момент порядка k?

10.
$$f_X(x) = \begin{cases} 4x^3, x \in [0;1] \\ 0, x \notin [0;1] \end{cases}$$
. Найдите m_X .

- 12. Что такое нижняя квартиль непрерывной случайной величины?
- 13. Как задать закон распределения дискретной двумерной случайной величины?
- 14. В каком диапазоне изменяется коэффициент корреляции ρ_{xy} ?

Какому случаю соответствуют его крайние значения?

- Приведите пример реальной *п* мерной непрерывной случайной величины.
- 16. Пусть \overline{x} среднее арифметическое результатов измерения $x_1,...,x_n$ случайной

величины X . Допишите недостающие элементы в формуле

$$P(|\overline{x} - ...| \ge \varepsilon)... \quad (\forall \varepsilon > 0),$$

которая записывает теорему Чебышева для этого случая.

Ответы к тесту 2

- 1. 1.
- 2. 2/3.
- 3. Если каждое событие не зависит от произведения любого числа остальных событий и от каждого из них в отдельности.
- 4. 0,65.
- 5. 0,784.
- 6. 0,36.

7.
$$P(X = k) = p(1-p)^{k-1}; k = 1, 2, ...; 0 $p = \frac{1}{m_x}$.$$

- 8. 13/6.
- 9. $\alpha_k = M \lceil X^k \rceil$.
- 10.4/5.

11.
$$f(x) = 0$$
 npu $x < 0$; $f(x) = \frac{1}{2}e^{-x/2}$ npu $x \ge 0$.

- 12. Корень уравнения F(x) = 1/4.
- 13.С помощью формулы $P(X = x_i, Y = y_k) = p_{ik}; i = 1, 2, ...; k = 1, 2, ...$
- 14. $-1 \le \rho_{_{XY}} \le 1$. Если Y = aX + b , то $\left| \rho_{_{XY}} \right| = 1; \;\; \rho_{_{XY}} = -1$ при $a > 0; \;\; \rho_{_{XY}} = 1$ при

a > 0.

15. Результаты п измерений одной и той же величины.

16.
$$P(|\overline{x} - m_x| \ge \varepsilon) \xrightarrow[n \to \infty]{} 0 \quad (\forall \varepsilon > 0).$$

Тест 3

- 1. Выразите $\overline{A+B}$ через \overline{A} и \overline{B} по формуле Де Моргана.
- 2. Какая последовательность испытаний называется схемой Бернулли?
- 3. Будут ли несовместные события независимыми?
- 4. В цепь последовательно включены два реле, отключающие ее при перегрузке и работающие независимо. Каждое срабатывает с вероятностью p=0.8. Найти вероятность, что при перегрузке сработает хотя бы одно реле.
- 5. 4 сообщения посланы независимо по различным каналам связи. Вероятность, что каждое сообщение дойдет до адресата, равна p=0.6. Найти вероятность, что до адресата дойдет не менее трех сообщений.
- 6. Партия деталей изготовлена тремя заводами. Вероятность брака на первом заводе равна $p_1=0.01$, на втором $p_2=0.01$, на третьем $p_3=0.04$. 1-й завод поставил $n_1=40\%$ продукции, 2-й $n_2=40\%$, 3-й $n_3=20\%$. Из партии для контроля взята случайная деталь. Найти вероятность, что она бракованная.
- 7. Запишите биномиальный закон распределения и объясните смысл входящих в него величин.
- 8. Вычислите D_X для случайной величины, заданной рядом распределения $\mathsf{P}(X=1)=1/4$, $\mathsf{P}(X=2)=1/3$, $\mathsf{P}(X=3)=5/12$.

- 9. Случайная величина X распределена по биномиальному закону с Параметрами
 - $n = 10; \ p = 1/4$. Запишите формулу, выражающую закон распределения.
- 10. Найдите квантиль порядка 1/3 для распределения

$$f_X(x) = \begin{cases} 3x^2, & x \in [0; 1]; \\ 0, & x \notin [0; 1]. \end{cases}$$

- 11. Случайная величина X распределена по показательному закону с $m_{\scriptscriptstyle X}=2$. Запишите функцию распределения $F_{\scriptscriptstyle X}(x)$.
- 12. Случайная величина X распределена по нормальному закону $Nig(m,\sigmaig)$. Запишите выражение для функции распределения $F_Xig(xig)$.
- 13. Дискретные случайные величины X,Y- независимы и равновероятно принимают только значения 0 и 1. Найдите ряд распределения случайной величины Z=X+Y.
- 14. Что такое коэффициент корреляции случайных величин X,Y? Для какой цели он применяется?
- 15. Запишите формулу, выражающую дисперсию суммы взаимно независимых случайных величин через дисперсии слагаемых.
- 16. Пусть $P^*(A)$ относительная частота, а P(A) вероятность события A . Теорема Бернулли утверждает, что $P^*(A) {\stackrel{P}{\underset{n \to \infty}{\longrightarrow}}} P(A)$. Как называется это свойство $P^*(A)$ как оценки?

Ответы к тесту 3

1.
$$\overline{A+B} = \overline{A}\overline{B}$$
.

- 2. Схема Бернулли проведения независимых испытаний состоит в том, что независимо проводится n испытаний (опытов), в каждом из которых наблюдаемое событие A появляется с вероятностью p (0) и не появляется с вероятностью <math>q = 1 p.
- 3. Несовместные события зависимы, так как если одно происходит, то второе не происходит.
- 4. 0,96.
- 5. 0,16416.
- 6. 0,016.

7.
$$P(X = k) = C_n^k p^k (1-p)^{n-k}$$
; $k = 0,1,...,n$; $0 .$

8. 275/144.

9.
$$P(X=k) = C_{10}^{k} (1/4)^{k} (3/4)^{10-k}; k = 0,1,...,10.$$

10.
$$1/\sqrt[3]{3}$$
.

11.
$$F(x) = 0$$
 npu $x < 0$; $F(x) = 1 - e^{-x/2}$ npu $x \ge 0$.

12.
$$F_{x}(x) = \Phi\left(\frac{x-m}{\sigma}\right)$$
. $\Phi(x) - \Phi$ ункция Лапласа.

13.
$$P(Z=0) = \frac{1}{4}$$
; $P(Z=1) = \frac{1}{2}$; $P(Z=2) = \frac{1}{4}$.

14.
$$\rho_{XY} = \frac{K_{XY}}{\sigma_{X}\sigma_{Y}}$$
; K_{XY} – корреляционный момент; σ_{X} , σ_{Y} – средние

квадратические отклонения X,Y. Применяется для исследования зависимости между X,Y.

15.
$$D\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} DX_{i}$$
.

16. Состоятельность.