
Problem 1. Assume that f : (1,∞) → R is continuous and bounded.
Prove that there exists a sequence {xn} such that

lim
n→∞

xn= +∞ and lim
n→∞

(f (xn+2021)−f (xn)) = 0

Solution.
Let g(x) =f(x+2021)−f(x). Then there are two possibilities. (1) There

exists x0>1 such that g(x) is positive (or negative) for all x>x0. (2) There
is no such x0.

In case (1), if, for example, g is positive on (x0,∞) , then the sequence
{f (x0+2021n)} is monotonically increasing. Since f is bounded, the follow-
ing limit exists and is finite:

lim
n→∞

f (x0+2021n) = lim
n→∞

f (x0+2021(n + 1)) = lim
n→∞

f (x0+2021n + 2021)

Therefore, one can take xn=x0+2021n.
In case (2), by the intermediate value property of g, for every positive

integer n>1 there is xn>n such that g (xn) = 0
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Problem 2. A natural number n is given. For which k ∈ {1, 2, . . . , n}
does a square matrix A of order n with integer elements exist such that all
minors of order k (that is, determinants of matrices obtained from A deleting
n− k rows and n− k columns) are odd?

Solution.
Answer: For k = 1, n− 1, n.
Examples:
i) k = 1 is a matrix of all 1;
ii) k = n is the identity matrix;
iii) k = n− 1 — add a row and a column to the identity matrix of order

n− 1 so that the sum in each row and in each column is even.
Suppose that such a matrix is found for k > 2 and n > k + 2. Let’s

focus on the k × (k + 2) submatrix. Let’s denote its columns f1, . . . , fk+2

and consider them as vectors over a field of two elements. Any k of them
are linearly independent, because the corresponding determinant is equal to
1(mod 2) (i.e. odd). But any k+1 are linearly dependent, which means that
the dependence is that the sum of these k + 1 vectors is 0. Thus, each of the
vectors fk+1, fk+2 is equal to f1 + . . . + fk. But this contradicts the linear
independence of the vectors f3, . . . , fk+2.
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Problem 3. For any positive a, b prove the inequality

ln
(a + 1)2

4a
ln

(b + 1)2

4b
≥ ln2 (a + 1)(b + 1)

2(a + b)
.

Solution.

ln
(a + 1)2

4a
ln

(b + 1)2

4b
= ln

(
1−

(
a− 1

a + 1

)2
)

ln

(
1−

(
b− 1

b + 1

)2
)

=

(
∞∑
n=1

1

n

(
a− 1

a + 1

)2n
)
×

(
∞∑
n=1

1

n

(
b− 1

b + 1

)2n
)

>

(
∞∑
n=1

1

n

(
(a− 1)(b− 1)

(a + 1)(b + 1)

)n
)2

= ln2

(
1− (a− 1)(b− 1)

(a + 1)(b + 1)

)
= ln2 (a + 1)(b + 1)

2(a + b)
.
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Problem 4. Let

an = 2
∞∑
k=0

(−1)k(n+1)

(2k + 1)n+1
.

Prove that the sequence {a1/nn }∞n=1 is strictly decreasing.
Solution.
For any n ∈ N, prove the inequality a

1/n
n > a

1/(n+1)
n+1 which is equivalent

to the following one
an+1
n > ann+1.

Let n is odd. In this case, one has

an = 2

(
1 +

1

3n+1
+

1

5n+1
+ . . .

)
> 2,

an+1 = 2
∞∑
k=0

(−1)k

(2k + 1)n+2
≤ 2 (Leibnitz series).

Hence,
an+1
n > 2n+1 > 2n ≥ ann+1.

Let n is even. Then

an = 2

((
1− 1

3n+1

)
+

(
1

5n+1
− 1

7n+1

)
+ . . .

)
> 2

(
1− 1

3n+1

)
.

Using the Bernoulli inequality, one obtains

an+1
n > 2n+1

(
1− 1

3n+1

)n+1

≥ 2n+1

(
1− n + 1

3n+1

)
≥ 2n+1 · 8

9
.

One has

an+1 = 2
∞∑
k=0

1

(2k + 1)n+2
= 2

(
1 +

∞∑
k=1

1

(2k + 1)n+2

)
.

Let us estimate the obtained series:

∞∑
k=1

1

(2k + 1)n+2
≤

+∞∫
0

dt

(2t + 1)n+2
=

1

2(n + 1)
.

Consequently,

ann+1 ≤ 2n

(
1 +

1

2(n + 1)

)n

≤ 2n

√(
1 +

1

2n

)2n

< 2n
√
e < 2n

√
3.
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Thus, it is sufficient to show that

2n+1 · 8

9
> 2n

√
3.

This inequality is equivalent to the following evident inequality

16

9
>
√

3 ⇔ 256 > 243.

Thus, we proved the inequality for even n also.
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Problem 5. Evaluate the integral

e−1∫
1

lim
n→+∞

log(x + log(x + log(x + . . . log(x + log︸ ︷︷ ︸x)

n times

. . . ))) dx.

Here log(x) = ln(x).
Solution.
Let’s consider the sequence

yn(x) = log(x + log(x + log(x + . . . log(x + log︸ ︷︷ ︸x)

n times

. . . ))), 1 6 x 6 1−e, n = 1, 2, 3, . . . ,

all elements of which are defined correctly due to the fact that log t ∈ [0; +∞)
for any t ∈ [1; +∞) and take values from [0; +∞) in view of this fact. Since
the sequence yn(x) is monotonically increasing,

yn(x) = log(x + log(x + log(x + . . . log(x + log︸ ︷︷ ︸x)

n times

. . . ))) 6

6 log(x + log(x + log(x + . . . log(x + log︸ ︷︷ ︸(x + log x))

n times

. . . ))) = yn+1(x),

∀x ∈ [1; e− 1], n = 1, 2, 3, . . . ,

and is bounded from above,

yn(x) = log(x + log(x + log(x + . . . log(x + log︸ ︷︷ ︸x)

n times

. . . ))) 6

6 log(e− 1 + log(e− 1 + log(e− 1 + . . . log(e− 1 + log︸ ︷︷ ︸ e)
n times

. . . ))) = 1,

∀x ∈ [1; e− 1], n = 1, 2, 3, . . . ,

so the function

y(x) = lim
n→+∞

log(x + log(x + log(x + . . . log(x + log︸ ︷︷ ︸x)

n times

. . . )))

is defined for any x ∈ [1; e−1] by virtue of Weierstrass theorem, y(x) ∈ [0; 1]
for any x ∈ [1; e− 1] and the following identity takes place,

y(x) = lim
n→+∞

yn(x) = lim
n→+∞

log(x + yn−1(x)) = log(x + lim
n→+∞

yn−1(x)) =

= log(x + y(x)) ⇒ y(x) = log(x + y(x)), ∀x∈ [1; e− 1].
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It follows from this identity that the function y(x) takes any its value for one
only value of the variable x,

x = ey(x) − y(x).

Thus, the inverse function x = x(y) ≡ ey − y for the function y = y(x),
1 6 x 6 e − 1 is strictly increasing (since x′(y) = ey − 1 > 0 for any
y ∈ (0; 1]), x(0) = 1 and x(1) = e − 1. Taking into account that for any
continuous strictly increasing function f : [a; b] → [c; d], a > 0, c > 0, the
following equality is geometrically obvious,

b∫
a

f(x) dx +

f(b)∫
f(a)

f−1(y) dy = bf(b)− af(a),

we have that

e−1∫
1

y(x) dx = (e− 1) · 1− 1 · 0−
1∫

0

(ey − y) dy = e− 1−
(
ey − y2

2

)∣∣∣1
0

=
1

2
.



Problem 6.
Let (an)∞n=1 be a sequence of positive real numbers satisfying limn→∞ an =

0. Find a continuous function f : (0,+∞)→ (0,+∞) (or prove that it does
not exist) such that for all x > 0

lim
n→∞

fn(x) = 0 and lim
n→∞

fn(x)

an
= +∞

where fn is defined by f1 = f and fn = f ◦ fn−1 for n ≥ 2.
Solution.
Let d = (dn)∞n=1 be a decreasing sequence of positive real numbers with

limn→∞ dn = 0 and satisfying limn→∞
dn
an

= +∞ and dn+1 ≥ n
n+1

dn for all
n ∈ N. Then, by induction, we have dn+m ≥ n

n+m
dn. Let us define f as

f(dn) = dn+1 for all n ∈ N, f linear on [dn+1, dn] and constant on [d1,+∞).
We show that f has the desired property. In fact, for any x > 0 we have
f1(x) = f(x) ≤ d1 and since f is increasing on (0, d1) we have (by induction)
fn(x) ≤ dn → 0. Moreover, for every x > 0 there exists m ∈ N such that
x > dm. Then, again by monotonicity of f , fn(x) ≥ dm+n, and therefore

fn(x)

an
≥ dm+n

an
=

dm+n

dn
· dn
an
≥ n

n + m
· dn
an
→ +∞.

It remains to construct a sequence d with the above properties. Let us
denote bn = sup{ak : k ≥ n}. Then the sequence (bn)∞n=1 is nonincreasing,
bn ≥ an for every n ∈ N and limn→∞ bn = lim supn→∞ an = 0. Further, we
define cn =

√
bn + 1

n
. The sequence (cn)∞n=1 is decreasing, converges to zero

and
cn
an
≥
√
bn
bn

=
1√
bn
→ +∞.

We define d1 = c1 and for n ≥ 2

dn = max

{
cn,

n− 1

n
dn−1

}
.

Then dn ≥ cn, hence limn→∞
dn
an

= +∞ and we have dn+1 ≥ n
n+1

dn. We show

that d is decreasing with limit zero. We either have dn = n−1
n
dn−1 < dn−1 or

dn = cn < cn−1 ≤ dn−1. Hence, d is decreasing. Further, we either have a
subsequence dnk

where dnk
= cnk

. Then limk→∞ dnk
= limk→∞ cnk

= 0 and
due to monotonicity limn→∞ dn = 0. Or, there exists n0 such that for all
n ≥ n0 we have dn = n−1

n
dn−1. Hence, dn = n0

n
dn0 → 0.
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Problem 7.
Has the equation y′′+x2 (y′)3 (2+sin(x−y)) = 0 a non-constant solution

defined in a neighborhood of∞ and having a finite non-zero limit as x→∞?
Solution.
We will prove the existence of a strictly monotonic solution with a finite

non-zero limit as x→∞. Let z(t) be the inverse function of such a solution:
z(y(x)) = x, t = y(z(t)). Then

1 = y′(z(t)) · ż(t),

0 = y′′(z(t)) · ż(t)2 + y′(z(t)) · z̈(t),

0 = −z(t)2

ż(t)3
(2 + sin(z(t)− y(z(t)))) · ż(t)2 +

z̈(t)

ż(t)
,

0 = −z(t)2(2 + sin(z(t)− t)) + z̈(t),

whence z̈ = (2 + sin(z − t)) z2 = p(t, z)z2 with the Lipschitz continuous
function p(t, z) satisfying 1 ≤ p(t, z) ≤ 3.

Consider the maximally extended solution to the last equation with the
initial data z(0) = 7, ż(0) = 13.

Consider also the solution w(t) = 6(t − 1)−2, t < 1, to the equation
ẅ = w2 and note that w(0) = 6 < 7, ẇ(0) = 12 < 13.

Both z and w are positive and strictly increasing for t > 0 in their do-
mains.

Moreover, for these t we have w(t) < z(t) and ẇ(t) < ż(t). Indeed, if not
so, then let t1 > 0 be the minimal t breaking one of these inequalities. Then
they are satisfied on [0; t1) and

z(t1) = 7 +

∫ t1

0

z(t) dt > 6 +

∫ t1

0

w(t) dt = w(t1),

ż(t1) = 13 +

∫ t1

0

p(t, z(t))z(t)2 dt > 12 +

∫ t1

0

w(t)2 dt = ẇ(t1),

which contradicts to the choice of t1.
Note that w(t) → ∞ as t → 1. Hence either the same is for z(t) or the

right boundary point t∗ > 0 of the domain of z is less than 1.
If limt→t∗ z(t) < ∞, then z̈ = p(t, z(t))z(t)2 is bounded and therefore ż

also has a finite limit, which makes z(t) extensible to the right of t∗. So,
z(t)→∞ as t→ t∗. The inverse function of z(t) can be defined at least on
[7,∞) and tends to t∗ ∈ (0; 1] at infinity.
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