Problem 1. Assume that $f:(1, \infty) \rightarrow \mathbb{R}$ is continuous and bounded. Prove that there exists a sequence $\left\{x_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=+\infty \text { and } \lim _{n \rightarrow \infty}\left(f\left(x_{n}+2021\right)-f\left(x_{n}\right)\right)=0
$$

Solution.

Let $g(x)=f(x+2021)-f(x)$. Then there are two possibilities. (1) There exists $x_{0}>1$ such that $g(x)$ is positive (or negative) for all $x>x_{0}$. (2) There is no such x_{0}.

In case (1), if, for example, g is positive on $\left(x_{0}, \infty\right)$, then the sequence $\left\{f\left(x_{0}+2021 n\right)\right\}$ is monotonically increasing. Since f is bounded, the following limit exists and is finite:

$$
\lim _{n \rightarrow \infty} f\left(x_{0}+2021 n\right)=\lim _{n \rightarrow \infty} f\left(x_{0}+2021(n+1)\right)=\lim _{n \rightarrow \infty} f\left(x_{0}+2021 n+2021\right)
$$

Therefore, one can take $x_{n}=x_{0}+2021 n$.
In case (2), by the intermediate value property of g, for every positive integer $n>1$ there is $x_{n}>n$ such that $g\left(x_{n}\right)=0$

Problem 2. A natural number n is given. For which $k \in\{1,2, \ldots, n\}$ does a square matrix A of order n with integer elements exist such that all minors of order k (that is, determinants of matrices obtained from A deleting $n-k$ rows and $n-k$ columns) are odd?

Solution.
Answer: For $k=1, n-1, n$.
Examples:
i) $k=1$ is a matrix of all 1 ;
ii) $k=n$ is the identity matrix;
iii) $k=n-1$ - add a row and a column to the identity matrix of order $n-1$ so that the sum in each row and in each column is even.

Suppose that such a matrix is found for $k \geqslant 2$ and $n \geqslant k+2$. Let's focus on the $k \times(k+2)$ submatrix. Let's denote its columns f_{1}, \ldots, f_{k+2} and consider them as vectors over a field of two elements. Any k of them are linearly independent, because the corresponding determinant is equal to $1(\bmod 2)$ (i.e. odd). But any $k+1$ are linearly dependent, which means that the dependence is that the sum of these $k+1$ vectors is 0 . Thus, each of the vectors f_{k+1}, f_{k+2} is equal to $f_{1}+\ldots+f_{k}$. But this contradicts the linear independence of the vectors f_{3}, \ldots, f_{k+2}.

Problem 3. For any positive a, b prove the inequality

$$
\ln \frac{(a+1)^{2}}{4 a} \ln \frac{(b+1)^{2}}{4 b} \geq \ln ^{2} \frac{(a+1)(b+1)}{2(a+b)}
$$

Solution.

$$
\begin{gathered}
\ln \frac{(a+1)^{2}}{4 a} \ln \frac{(b+1)^{2}}{4 b}=\ln \left(1-\left(\frac{a-1}{a+1}\right)^{2}\right) \ln \left(1-\left(\frac{b-1}{b+1}\right)^{2}\right)= \\
\left(\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{a-1}{a+1}\right)^{2 n}\right) \times\left(\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{b-1}{b+1}\right)^{2 n}\right) \geqslant\left(\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{(a-1)(b-1)}{(a+1)(b+1)}\right)^{n}\right)^{2} \\
=\ln ^{2}\left(1-\frac{(a-1)(b-1)}{(a+1)(b+1)}\right)=\ln ^{2} \frac{(a+1)(b+1)}{2(a+b)}
\end{gathered}
$$

Problem 4. Let

$$
a_{n}=2 \sum_{k=0}^{\infty} \frac{(-1)^{k(n+1)}}{(2 k+1)^{n+1}} .
$$

Prove that the sequence $\left\{a_{n}^{1 / n}\right\}_{n=1}^{\infty}$ is strictly decreasing.
Solution.
For any $n \in \mathbb{N}$, prove the inequality $a_{n}^{1 / n}>a_{n+1}^{1 /(n+1)}$ which is equivalent to the following one

$$
a_{n}^{n+1}>a_{n+1}^{n} .
$$

Let n is odd. In this case, one has

$$
\begin{aligned}
& a_{n}=2\left(1+\frac{1}{3^{n+1}}+\frac{1}{5^{n+1}}+\ldots\right)>2 \\
& a_{n+1}=2 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{n+2}} \leq 2 \quad \text { (Leibnitz series) }
\end{aligned}
$$

Hence,

$$
a_{n}^{n+1}>2^{n+1}>2^{n} \geq a_{n+1}^{n} .
$$

Let n is even. Then

$$
a_{n}=2\left(\left(1-\frac{1}{3^{n+1}}\right)+\left(\frac{1}{5^{n+1}}-\frac{1}{7^{n+1}}\right)+\ldots\right)>2\left(1-\frac{1}{3^{n+1}}\right) .
$$

Using the Bernoulli inequality, one obtains

$$
a_{n}^{n+1}>2^{n+1}\left(1-\frac{1}{3^{n+1}}\right)^{n+1} \geq 2^{n+1}\left(1-\frac{n+1}{3^{n+1}}\right) \geq 2^{n+1} \cdot \frac{8}{9} .
$$

One has

$$
a_{n+1}=2 \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{n+2}}=2\left(1+\sum_{k=1}^{\infty} \frac{1}{(2 k+1)^{n+2}}\right) .
$$

Let us estimate the obtained series:

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k+1)^{n+2}} \leq \int_{0}^{+\infty} \frac{d t}{(2 t+1)^{n+2}}=\frac{1}{2(n+1)}
$$

Consequently,

$$
a_{n+1}^{n} \leq 2^{n}\left(1+\frac{1}{2(n+1)}\right)^{n} \leq 2^{n} \sqrt{\left(1+\frac{1}{2 n}\right)^{2 n}}<2^{n} \sqrt{e}<2^{n} \sqrt{3}
$$

Thus, it is sufficient to show that

$$
2^{n+1} \cdot \frac{8}{9}>2^{n} \sqrt{3}
$$

This inequality is equivalent to the following evident inequality

$$
\frac{16}{9}>\sqrt{3} \quad \Leftrightarrow \quad 256>243 .
$$

Thus, we proved the inequality for even n also.

Problem 5. Evaluate the integral

$$
\int_{1}^{e-1} \lim _{n \rightarrow+\infty} \underbrace{\log (x+\log (x+\log (x+\ldots \log (x+\log x}_{n \text { times }} x) \ldots))) d x .
$$

Here $\log (x)=\ln (x)$.

Solution.

Let's consider the sequence
$y_{n}(x)=\underbrace{\log (x+\log (x+\log (x+\ldots \log (x+\log x)}_{n \text { times }} \ldots))), \quad 1 \leqslant x \leqslant 1-e, \quad n=1,2,3, \ldots$,
all elements of which are defined correctly due to the fact that $\log t \in[0 ;+\infty)$ for any $t \in[1 ;+\infty)$ and take values from $[0 ;+\infty)$ in view of this fact. Since the sequence $y_{n}(x)$ is monotonically increasing,

$$
\begin{aligned}
& \quad y_{n}(x)=\underbrace{\log (x+\log (x+\log (x+\ldots \log (x+\log x) \ldots))) \leqslant}_{n \text { times }} \\
& \leqslant \underbrace{\log (x+\log (x+\log (x+\ldots \log (x+\log }_{n \text { times }}(x+\log x)) \ldots)))=y_{n+1}(x), \\
& \forall x \in[1 ; e-1], \quad n=1,2,3, \ldots,
\end{aligned}
$$

and is bounded from above,

$$
\begin{gathered}
y_{n}(x)=\underbrace{\log (x+\log (x+\log (x+\ldots \log (x+\log x)}_{n \text { times }} \ldots))) \leqslant \\
\leqslant \underbrace{\log (e-1+\log (e-1+\log (e-1+\ldots \log (e-1+\log e)}_{n \text { times }} \ldots)))=1, \\
\forall x \in[1 ; e-1], \quad n=1,2,3, \ldots,
\end{gathered}
$$

so the function

$$
y(x)=\lim _{n \rightarrow+\infty} \underbrace{\log (x+\log (x+\log (x+\ldots \log (x+\log x)}_{n \text { times }} \ldots)))
$$

is defined for any $x \in[1 ; e-1]$ by virtue of Weierstrass theorem, $y(x) \in[0 ; 1]$ for any $x \in[1 ; e-1]$ and the following identity takes place,

$$
\begin{aligned}
& y(x)=\lim _{n \rightarrow+\infty} y_{n}(x)=\lim _{n \rightarrow+\infty} \log \left(x+y_{n-1}(x)\right)=\log \left(x+\lim _{n \rightarrow+\infty} y_{n-1}(x)\right)= \\
&=\log (x+y(x)) \quad \Rightarrow \quad y(x)=\log (x+y(x)), \quad \forall x \in[1 ; e-1] .
\end{aligned}
$$

It follows from this identity that the function $y(x)$ takes any its value for one only value of the variable x,

$$
x=e^{y(x)}-y(x) .
$$

Thus, the inverse function $x=x(y) \equiv e^{y}-y$ for the function $y=y(x)$, $1 \leqslant x \leqslant e-1$ is strictly increasing (since $x^{\prime}(y)=e^{y}-1>0$ for any $y \in(0 ; 1]), x(0)=1$ and $x(1)=e-1$. Taking into account that for any continuous strictly increasing function $f:[a ; b] \rightarrow[c ; d], a \geqslant 0, c \geqslant 0$, the following equality is geometrically obvious,

$$
\int_{a}^{b} f(x) d x+\int_{f(a)}^{f(b)} f^{-1}(y) d y=b f(b)-a f(a)
$$

we have that

$$
\int_{1}^{e-1} y(x) d x=(e-1) \cdot 1-1 \cdot 0-\int_{0}^{1}\left(e^{y}-y\right) d y=e-1-\left.\left(e^{y}-\frac{y^{2}}{2}\right)\right|_{0} ^{1}=\frac{1}{2} .
$$

Problem 6.

Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of positive real numbers satisfying $\lim _{n \rightarrow \infty} a_{n}=$ 0 . Find a continuous function $f:(0,+\infty) \rightarrow(0,+\infty)$ (or prove that it does not exist) such that for all $x>0$

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{f_{n}(x)}{a_{n}}=+\infty
$$

where f_{n} is defined by $f_{1}=f$ and $f_{n}=f \circ f_{n-1}$ for $n \geq 2$.

Solution.

Let $d=\left(d_{n}\right)_{n=1}^{\infty}$ be a decreasing sequence of positive real numbers with $\lim _{n \rightarrow \infty} d_{n}=0$ and satisfying $\lim _{n \rightarrow \infty} \frac{d_{n}}{a_{n}}=+\infty$ and $d_{n+1} \geq \frac{n}{n+1} d_{n}$ for all $n \in \mathbb{N}$. Then, by induction, we have $d_{n+m} \geq \frac{n}{n+m} d_{n}$. Let us define f as $f\left(d_{n}\right)=d_{n+1}$ for all $n \in \mathbb{N}, f$ linear on $\left[d_{n+1}, d_{n}\right]$ and constant on $\left[d_{1},+\infty\right)$. We show that f has the desired property. In fact, for any $x>0$ we have $f_{1}(x)=f(x) \leq d_{1}$ and since f is increasing on ($0, d_{1}$) we have (by induction) $f_{n}(x) \leq d_{n} \rightarrow 0$. Moreover, for every $x>0$ there exists $m \in \mathbb{N}$ such that $x>d_{m}$. Then, again by monotonicity of $f, f_{n}(x) \geq d_{m+n}$, and therefore

$$
\frac{f_{n}(x)}{a_{n}} \geq \frac{d_{m+n}}{a_{n}}=\frac{d_{m+n}}{d_{n}} \cdot \frac{d_{n}}{a_{n}} \geq \frac{n}{n+m} \cdot \frac{d_{n}}{a_{n}} \rightarrow+\infty .
$$

It remains to construct a sequence d with the above properties. Let us denote $b_{n}=\sup \left\{a_{k}: k \geq n\right\}$. Then the sequence $\left(b_{n}\right)_{n=1}^{\infty}$ is nonincreasing, $b_{n} \geq a_{n}$ for every $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} b_{n}=\lim \sup _{n \rightarrow \infty} a_{n}=0$. Further, we define $c_{n}=\sqrt{b_{n}}+\frac{1}{n}$. The sequence $\left(c_{n}\right)_{n=1}^{\infty}$ is decreasing, converges to zero and

$$
\frac{c_{n}}{a_{n}} \geq \frac{\sqrt{b_{n}}}{b_{n}}=\frac{1}{\sqrt{b_{n}}} \rightarrow+\infty
$$

We define $d_{1}=c_{1}$ and for $n \geq 2$

$$
d_{n}=\max \left\{c_{n}, \frac{n-1}{n} d_{n-1}\right\} .
$$

Then $d_{n} \geq c_{n}$, hence $\lim _{n \rightarrow \infty} \frac{d_{n}}{a_{n}}=+\infty$ and we have $d_{n+1} \geq \frac{n}{n+1} d_{n}$. We show that d is decreasing with limit zero. We either have $d_{n}=\frac{n-1}{n} d_{n-1}<d_{n-1}$ or $d_{n}=c_{n}<c_{n-1} \leq d_{n-1}$. Hence, d is decreasing. Further, we either have a subsequence $d_{n_{k}}$ where $d_{n_{k}}=c_{n_{k}}$. Then $\lim _{k \rightarrow \infty} d_{n_{k}}=\lim _{k \rightarrow \infty} c_{n_{k}}=0$ and due to monotonicity $\lim _{n \rightarrow \infty} d_{n}=0$. Or, there exists n_{0} such that for all $n \geq n_{0}$ we have $d_{n}=\frac{n-1}{n} d_{n-1}$. Hence, $d_{n}=\frac{n_{0}}{n} d_{n_{0}} \rightarrow 0$.

Problem 7.

Has the equation $y^{\prime \prime}+x^{2}\left(y^{\prime}\right)^{3}(2+\sin (x-y))=0$ a non-constant solution defined in a neighborhood of ∞ and having a finite non-zero limit as $x \rightarrow \infty$?

Solution.

We will prove the existence of a strictly monotonic solution with a finite non-zero limit as $x \rightarrow \infty$. Let $z(t)$ be the inverse function of such a solution: $z(y(x))=x, \quad t=y(z(t))$. Then

$$
\begin{aligned}
& 1=y^{\prime}(z(t)) \cdot \dot{z}(t), \\
& 0=y^{\prime \prime}(z(t)) \cdot \dot{z}(t)^{2}+y^{\prime}(z(t)) \cdot \ddot{z}(t), \\
& 0=-\frac{z(t)^{2}}{\dot{z}(t)^{3}}(2+\sin (z(t)-y(z(t)))) \cdot \dot{z}(t)^{2}+\frac{\ddot{z}(t)}{\dot{z}(t)}, \\
& 0=-z(t)^{2}(2+\sin (z(t)-t))+\ddot{z}(t),
\end{aligned}
$$

whence $\ddot{z}=(2+\sin (z-t)) z^{2}=p(t, z) z^{2}$ with the Lipschitz continuous function $p(t, z)$ satisfying $1 \leq p(t, z) \leq 3$.

Consider the maximally extended solution to the last equation with the initial data $z(0)=7, \dot{z}(0)=13$.

Consider also the solution $w(t)=6(t-1)^{-2}, t<1$, to the equation $\ddot{w}=w^{2}$ and note that $w(0)=6<7, \dot{w}(0)=12<13$.

Both z and w are positive and strictly increasing for $t>0$ in their domains.

Moreover, for these t we have $w(t)<z(t)$ and $\dot{w}(t)<\dot{z}(t)$. Indeed, if not so, then let $t_{1}>0$ be the minimal t breaking one of these inequalities. Then they are satisfied on $\left[0 ; t_{1}\right)$ and

$$
\begin{aligned}
& z\left(t_{1}\right)=7+\int_{0}^{t_{1}} z(t) d t>6+\int_{0}^{t_{1}} w(t) d t=w\left(t_{1}\right) \\
& \dot{z}\left(t_{1}\right)=13+\int_{0}^{t_{1}} p(t, z(t)) z(t)^{2} d t>12+\int_{0}^{t_{1}} w(t)^{2} d t=\dot{w}\left(t_{1}\right)
\end{aligned}
$$

which contradicts to the choice of t_{1}.
Note that $w(t) \rightarrow \infty$ as $t \rightarrow 1$. Hence either the same is for $z(t)$ or the right boundary point $t_{*}>0$ of the domain of z is less than 1 .

If $\lim _{t \rightarrow t_{*}} z(t)<\infty$, then $\ddot{z}=p(t, z(t)) z(t)^{2}$ is bounded and therefore \dot{z} also has a finite limit, which makes $z(t)$ extensible to the right of t_{*}. So, $z(t) \rightarrow \infty$ as $t \rightarrow t_{*}$. The inverse function of $z(t)$ can be defined at least on $[7, \infty)$ and tends to $t_{*} \in(0 ; 1]$ at infinity.

